A Strategy for Separating and Recovering Aqueous Ions: Redox-Recyclable Ion-Exchange Materials Containing a Physisorbed, Redox-Active, Organometallic Complex
A series of anion-exchange materials were prepared by adsorption of the dark-green organometallic salt HEP+NO3 - or HEP+ReO4 - dissolved in organic solvents onto three different silica gels (HEP = 1,1‘,3,3‘-tetrakis(2-methyl-2-hexyl)ferrocene). Adsorption isotherms showed that the amount of HEP+ sal...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 1998-02, Vol.70 (4), p.757-765 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 765 |
---|---|
container_issue | 4 |
container_start_page | 757 |
container_title | Analytical chemistry (Washington) |
container_volume | 70 |
creator | Chambliss, C. Kevin Odom, Matthew A. Morales, Christine M. L. Martin, Charles R. Strauss, Steven H. |
description | A series of anion-exchange materials were prepared by adsorption of the dark-green organometallic salt HEP+NO3 - or HEP+ReO4 - dissolved in organic solvents onto three different silica gels (HEP = 1,1‘,3,3‘-tetrakis(2-methyl-2-hexyl)ferrocene). Adsorption isotherms showed that the amount of HEP+ salt adsorbed depended on the choice of counteranion, solvent, surface area, and pore size diameter of the silica gel. After drying the HEP+NO3 -/SiO2 and HEP+ReO4 -/SiO2 solid materials, the organometallic salts did not desorb into the aqueous phase when the solids were treated with aqueous solutions containing NaNO3 and/or HNO3. The HEP+NO3 -/SiO2 materials functioned as redox-recyclable ion exchangers. Treatment of the materials with aqueous waste simulants containing KReO4, NaNO3, and HNO3 resulted in NO3 -/ReO4 - ion exchange as follows: HEP+NO3 -/SiO2(s) + ReO4 -(aq) ⇌ HEP+ReO4 -/SiO2(s) + NO3 -(aq). The distribution coefficient for one of the new materials was 100 mL/g (440 mL/mmol of HEP+) for an aqueous waste simulant containing ReO4 - and 1.0 M HNO3. This can be compared with 290 mL/g (87 mL/mmol of cationic sites) for Reillex-HPQ, a commercial non-redox-recyclable ion-exchange resin which has been studied for ReO4 - and TcO4 - extraction. The higher distribution coefficient per millimole of cationic sites suggests that HEP+NO3 -/SiO2 is more selective for ReO4 - than Reillex-HPQ under these conditions. The recovery of adsorbed ReO4 - was accomplished by treating the exchanged materials with aqueous ferrocyanide, which caused the reduction of adsorbed HEP+ to adsorbed HEP and concomitant release of the adsorbed counterions ReO4 - and NO3 -. Reactivation of HEP/SiO2 to HEP+NO3 -/SiO2 was accomplished with aqueous ferric nitrate. Five complete extraction−deactivation/(ReO4 - recovery)−reactivation cycles (duty cycle time 94 min) consistently showed a slow decrease in distribution coefficient (∼20% over five cycles). Nevertheless, the data indicate that redox-recyclable anion exchange is a viable concept and that redox-recyclable ion-exchange materials with improved stability should be considered as viable alternatives to traditional anion-exchange resins in the future. |
doi_str_mv | 10.1021/ac9705677 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26806834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26806834</sourcerecordid><originalsourceid>FETCH-LOGICAL-a448t-13f0313d03356054da9defbf05049e7c7ec769f02cb7c9b412c27121c8d8c9e33</originalsourceid><addsrcrecordid>eNplkcFuEzEQhi0EEiFw4A0sBEhIXRjbu7aXWxRaqNSqVVMuXCzH601dNnawN1Vy49q36LPxJHhJFCQ4WaP55vM_GoReEnhPgJIP2tQCKi7EIzQiFYWCS0kfoxEAsIIKgKfoWUq3AIQA4SP0MMGzPureLra4DRHP7Ern0vkF1r7BV9aEOxuHcvJjbcM64dPg08dfP-9zrwmbIhNb0-l5Z4dOcbwxN9ovLD7Pzuh0l_A0-F47_0eJL2-2yaUQ57Y52hsmpnd39ghfxIX2YWl73XXO5LHlqrOb5-hJmy32xf4do68nx9fTL8XZxefT6eSs0GUp-4KwFhhhDTBWcajKRteNbectVFDWVhhhjeB1C9TMhannJaGGCkKJkY00tWVsjN7uvKsY8qapV0uXjO067Ye1FeUSuGRlBl_9A96GdfQ5m6JEyErwnGOM3u0gE0NK0bZqFd1Sx60ioIZDqcOhMvt6L9TJ6K6N2huXDgOUVLJkMmPFDnOpt5tDW8fvigsmKnV9OVMnn67Ov3FaqyHnmx2vTfob8f_vfwMHuq7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217857631</pqid></control><display><type>article</type><title>A Strategy for Separating and Recovering Aqueous Ions: Redox-Recyclable Ion-Exchange Materials Containing a Physisorbed, Redox-Active, Organometallic Complex</title><source>American Chemical Society Journals</source><creator>Chambliss, C. Kevin ; Odom, Matthew A. ; Morales, Christine M. L. ; Martin, Charles R. ; Strauss, Steven H.</creator><creatorcontrib>Chambliss, C. Kevin ; Odom, Matthew A. ; Morales, Christine M. L. ; Martin, Charles R. ; Strauss, Steven H.</creatorcontrib><description>A series of anion-exchange materials were prepared by adsorption of the dark-green organometallic salt HEP+NO3 - or HEP+ReO4 - dissolved in organic solvents onto three different silica gels (HEP = 1,1‘,3,3‘-tetrakis(2-methyl-2-hexyl)ferrocene). Adsorption isotherms showed that the amount of HEP+ salt adsorbed depended on the choice of counteranion, solvent, surface area, and pore size diameter of the silica gel. After drying the HEP+NO3 -/SiO2 and HEP+ReO4 -/SiO2 solid materials, the organometallic salts did not desorb into the aqueous phase when the solids were treated with aqueous solutions containing NaNO3 and/or HNO3. The HEP+NO3 -/SiO2 materials functioned as redox-recyclable ion exchangers. Treatment of the materials with aqueous waste simulants containing KReO4, NaNO3, and HNO3 resulted in NO3 -/ReO4 - ion exchange as follows: HEP+NO3 -/SiO2(s) + ReO4 -(aq) ⇌ HEP+ReO4 -/SiO2(s) + NO3 -(aq). The distribution coefficient for one of the new materials was 100 mL/g (440 mL/mmol of HEP+) for an aqueous waste simulant containing ReO4 - and 1.0 M HNO3. This can be compared with 290 mL/g (87 mL/mmol of cationic sites) for Reillex-HPQ, a commercial non-redox-recyclable ion-exchange resin which has been studied for ReO4 - and TcO4 - extraction. The higher distribution coefficient per millimole of cationic sites suggests that HEP+NO3 -/SiO2 is more selective for ReO4 - than Reillex-HPQ under these conditions. The recovery of adsorbed ReO4 - was accomplished by treating the exchanged materials with aqueous ferrocyanide, which caused the reduction of adsorbed HEP+ to adsorbed HEP and concomitant release of the adsorbed counterions ReO4 - and NO3 -. Reactivation of HEP/SiO2 to HEP+NO3 -/SiO2 was accomplished with aqueous ferric nitrate. Five complete extraction−deactivation/(ReO4 - recovery)−reactivation cycles (duty cycle time 94 min) consistently showed a slow decrease in distribution coefficient (∼20% over five cycles). Nevertheless, the data indicate that redox-recyclable anion exchange is a viable concept and that redox-recyclable ion-exchange materials with improved stability should be considered as viable alternatives to traditional anion-exchange resins in the future.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac9705677</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Exact sciences and technology ; General and physical chemistry ; Ions ; Organic chemistry ; Solid-liquid interface ; Solvents ; Surface physical chemistry</subject><ispartof>Analytical chemistry (Washington), 1998-02, Vol.70 (4), p.757-765</ispartof><rights>Copyright © 1998 American Chemical Society</rights><rights>1998 INIST-CNRS</rights><rights>Copyright American Chemical Society Feb 15, 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a448t-13f0313d03356054da9defbf05049e7c7ec769f02cb7c9b412c27121c8d8c9e33</citedby><cites>FETCH-LOGICAL-a448t-13f0313d03356054da9defbf05049e7c7ec769f02cb7c9b412c27121c8d8c9e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac9705677$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac9705677$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2158438$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chambliss, C. Kevin</creatorcontrib><creatorcontrib>Odom, Matthew A.</creatorcontrib><creatorcontrib>Morales, Christine M. L.</creatorcontrib><creatorcontrib>Martin, Charles R.</creatorcontrib><creatorcontrib>Strauss, Steven H.</creatorcontrib><title>A Strategy for Separating and Recovering Aqueous Ions: Redox-Recyclable Ion-Exchange Materials Containing a Physisorbed, Redox-Active, Organometallic Complex</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A series of anion-exchange materials were prepared by adsorption of the dark-green organometallic salt HEP+NO3 - or HEP+ReO4 - dissolved in organic solvents onto three different silica gels (HEP = 1,1‘,3,3‘-tetrakis(2-methyl-2-hexyl)ferrocene). Adsorption isotherms showed that the amount of HEP+ salt adsorbed depended on the choice of counteranion, solvent, surface area, and pore size diameter of the silica gel. After drying the HEP+NO3 -/SiO2 and HEP+ReO4 -/SiO2 solid materials, the organometallic salts did not desorb into the aqueous phase when the solids were treated with aqueous solutions containing NaNO3 and/or HNO3. The HEP+NO3 -/SiO2 materials functioned as redox-recyclable ion exchangers. Treatment of the materials with aqueous waste simulants containing KReO4, NaNO3, and HNO3 resulted in NO3 -/ReO4 - ion exchange as follows: HEP+NO3 -/SiO2(s) + ReO4 -(aq) ⇌ HEP+ReO4 -/SiO2(s) + NO3 -(aq). The distribution coefficient for one of the new materials was 100 mL/g (440 mL/mmol of HEP+) for an aqueous waste simulant containing ReO4 - and 1.0 M HNO3. This can be compared with 290 mL/g (87 mL/mmol of cationic sites) for Reillex-HPQ, a commercial non-redox-recyclable ion-exchange resin which has been studied for ReO4 - and TcO4 - extraction. The higher distribution coefficient per millimole of cationic sites suggests that HEP+NO3 -/SiO2 is more selective for ReO4 - than Reillex-HPQ under these conditions. The recovery of adsorbed ReO4 - was accomplished by treating the exchanged materials with aqueous ferrocyanide, which caused the reduction of adsorbed HEP+ to adsorbed HEP and concomitant release of the adsorbed counterions ReO4 - and NO3 -. Reactivation of HEP/SiO2 to HEP+NO3 -/SiO2 was accomplished with aqueous ferric nitrate. Five complete extraction−deactivation/(ReO4 - recovery)−reactivation cycles (duty cycle time 94 min) consistently showed a slow decrease in distribution coefficient (∼20% over five cycles). Nevertheless, the data indicate that redox-recyclable anion exchange is a viable concept and that redox-recyclable ion-exchange materials with improved stability should be considered as viable alternatives to traditional anion-exchange resins in the future.</description><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Ions</subject><subject>Organic chemistry</subject><subject>Solid-liquid interface</subject><subject>Solvents</subject><subject>Surface physical chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNplkcFuEzEQhi0EEiFw4A0sBEhIXRjbu7aXWxRaqNSqVVMuXCzH601dNnawN1Vy49q36LPxJHhJFCQ4WaP55vM_GoReEnhPgJIP2tQCKi7EIzQiFYWCS0kfoxEAsIIKgKfoWUq3AIQA4SP0MMGzPureLra4DRHP7Ern0vkF1r7BV9aEOxuHcvJjbcM64dPg08dfP-9zrwmbIhNb0-l5Z4dOcbwxN9ovLD7Pzuh0l_A0-F47_0eJL2-2yaUQ57Y52hsmpnd39ghfxIX2YWl73XXO5LHlqrOb5-hJmy32xf4do68nx9fTL8XZxefT6eSs0GUp-4KwFhhhDTBWcajKRteNbectVFDWVhhhjeB1C9TMhannJaGGCkKJkY00tWVsjN7uvKsY8qapV0uXjO067Ye1FeUSuGRlBl_9A96GdfQ5m6JEyErwnGOM3u0gE0NK0bZqFd1Sx60ioIZDqcOhMvt6L9TJ6K6N2huXDgOUVLJkMmPFDnOpt5tDW8fvigsmKnV9OVMnn67Ov3FaqyHnmx2vTfob8f_vfwMHuq7g</recordid><startdate>19980215</startdate><enddate>19980215</enddate><creator>Chambliss, C. Kevin</creator><creator>Odom, Matthew A.</creator><creator>Morales, Christine M. L.</creator><creator>Martin, Charles R.</creator><creator>Strauss, Steven H.</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>19980215</creationdate><title>A Strategy for Separating and Recovering Aqueous Ions: Redox-Recyclable Ion-Exchange Materials Containing a Physisorbed, Redox-Active, Organometallic Complex</title><author>Chambliss, C. Kevin ; Odom, Matthew A. ; Morales, Christine M. L. ; Martin, Charles R. ; Strauss, Steven H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a448t-13f0313d03356054da9defbf05049e7c7ec769f02cb7c9b412c27121c8d8c9e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Ions</topic><topic>Organic chemistry</topic><topic>Solid-liquid interface</topic><topic>Solvents</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chambliss, C. Kevin</creatorcontrib><creatorcontrib>Odom, Matthew A.</creatorcontrib><creatorcontrib>Morales, Christine M. L.</creatorcontrib><creatorcontrib>Martin, Charles R.</creatorcontrib><creatorcontrib>Strauss, Steven H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chambliss, C. Kevin</au><au>Odom, Matthew A.</au><au>Morales, Christine M. L.</au><au>Martin, Charles R.</au><au>Strauss, Steven H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Strategy for Separating and Recovering Aqueous Ions: Redox-Recyclable Ion-Exchange Materials Containing a Physisorbed, Redox-Active, Organometallic Complex</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>1998-02-15</date><risdate>1998</risdate><volume>70</volume><issue>4</issue><spage>757</spage><epage>765</epage><pages>757-765</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A series of anion-exchange materials were prepared by adsorption of the dark-green organometallic salt HEP+NO3 - or HEP+ReO4 - dissolved in organic solvents onto three different silica gels (HEP = 1,1‘,3,3‘-tetrakis(2-methyl-2-hexyl)ferrocene). Adsorption isotherms showed that the amount of HEP+ salt adsorbed depended on the choice of counteranion, solvent, surface area, and pore size diameter of the silica gel. After drying the HEP+NO3 -/SiO2 and HEP+ReO4 -/SiO2 solid materials, the organometallic salts did not desorb into the aqueous phase when the solids were treated with aqueous solutions containing NaNO3 and/or HNO3. The HEP+NO3 -/SiO2 materials functioned as redox-recyclable ion exchangers. Treatment of the materials with aqueous waste simulants containing KReO4, NaNO3, and HNO3 resulted in NO3 -/ReO4 - ion exchange as follows: HEP+NO3 -/SiO2(s) + ReO4 -(aq) ⇌ HEP+ReO4 -/SiO2(s) + NO3 -(aq). The distribution coefficient for one of the new materials was 100 mL/g (440 mL/mmol of HEP+) for an aqueous waste simulant containing ReO4 - and 1.0 M HNO3. This can be compared with 290 mL/g (87 mL/mmol of cationic sites) for Reillex-HPQ, a commercial non-redox-recyclable ion-exchange resin which has been studied for ReO4 - and TcO4 - extraction. The higher distribution coefficient per millimole of cationic sites suggests that HEP+NO3 -/SiO2 is more selective for ReO4 - than Reillex-HPQ under these conditions. The recovery of adsorbed ReO4 - was accomplished by treating the exchanged materials with aqueous ferrocyanide, which caused the reduction of adsorbed HEP+ to adsorbed HEP and concomitant release of the adsorbed counterions ReO4 - and NO3 -. Reactivation of HEP/SiO2 to HEP+NO3 -/SiO2 was accomplished with aqueous ferric nitrate. Five complete extraction−deactivation/(ReO4 - recovery)−reactivation cycles (duty cycle time 94 min) consistently showed a slow decrease in distribution coefficient (∼20% over five cycles). Nevertheless, the data indicate that redox-recyclable anion exchange is a viable concept and that redox-recyclable ion-exchange materials with improved stability should be considered as viable alternatives to traditional anion-exchange resins in the future.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ac9705677</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 1998-02, Vol.70 (4), p.757-765 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_26806834 |
source | American Chemical Society Journals |
subjects | Chemistry Exact sciences and technology General and physical chemistry Ions Organic chemistry Solid-liquid interface Solvents Surface physical chemistry |
title | A Strategy for Separating and Recovering Aqueous Ions: Redox-Recyclable Ion-Exchange Materials Containing a Physisorbed, Redox-Active, Organometallic Complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A40%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Strategy%20for%20Separating%20and%20Recovering%20Aqueous%20Ions:%E2%80%89%20Redox-Recyclable%20Ion-Exchange%20Materials%20Containing%20a%20Physisorbed,%20Redox-Active,%20Organometallic%20Complex&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Chambliss,%20C.%20Kevin&rft.date=1998-02-15&rft.volume=70&rft.issue=4&rft.spage=757&rft.epage=765&rft.pages=757-765&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac9705677&rft_dat=%3Cproquest_cross%3E26806834%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217857631&rft_id=info:pmid/&rfr_iscdi=true |