The correction of hardness value measured on a curved surface specimen

In view of the difficulties in solving the hardness problems, the assumptions to simplify the problems have been presented based on (1) the analogy between the elastic solution in the linear elastic indentation problem and the elastic-plastic solution derived from Meyer’s law, (2) the concept of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mechanical sciences 1998-12, Vol.40 (12), p.1191-1208
1. Verfasser: Bingzheng, Gai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1208
container_issue 12
container_start_page 1191
container_title International journal of mechanical sciences
container_volume 40
creator Bingzheng, Gai
description In view of the difficulties in solving the hardness problems, the assumptions to simplify the problems have been presented based on (1) the analogy between the elastic solution in the linear elastic indentation problem and the elastic-plastic solution derived from Meyer’s law, (2) the concept of the equivalent spherical indenter for a conical (or pyramid) indenter, and (3) Euler’s formula which relate a spherical surface with a general curved surface, in this paper. By means of these assumptions, the calculating formulas of the corrective value (or coefficient) of the hardness value measured on a curved surface specimen have been given. To examine whether the formulas obtained in this paper are right or not, we compare them with the experimental results. It is shown that all the theoretical values seem to agree with experimental data.
doi_str_mv 10.1016/S0020-7403(98)00001-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26804312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020740398000010</els_id><sourcerecordid>26804312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-94dbbbd63a4210ffdd6a21268551bfe73dd797b1962f68d0d3a7670046fdaed43</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QchBRA-r-dhNNieRYlUoeLCeQzaZ0Mh2tybdgv_e9INezSVh8sw7zIPQNSUPlFDx-EkII4UsCb9T9T3JhxbkBI1oLVXBqGCnaHREztFFSt8ZkaTiIzSdLwDbPkaw69B3uPd4YaLrICW8Me0AeAkmDREczr8G2yFu8jtXvLGA0wpsWEJ3ic68aRNcHe4x-pq-zCdvxezj9X3yPCssp9W6UKVrmsYJbkpGiffOCcMoE3VV0caD5M5JJRuqBPOidsRxI4UkpBTeGXAlH6Pbfe4q9j8DpLVehmShbU0H_ZB0jiIlpyyD1R60sU8pgterGJYm_mpK9Naa3lnTWyVa1XpnTZPcd3MYYJI1rY-msyEdmxmninKVsac9BnnZTYCokw3QWXBha1K7Pvwz6A-6pYCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26804312</pqid></control><display><type>article</type><title>The correction of hardness value measured on a curved surface specimen</title><source>Elsevier ScienceDirect Journals</source><creator>Bingzheng, Gai</creator><creatorcontrib>Bingzheng, Gai</creatorcontrib><description>In view of the difficulties in solving the hardness problems, the assumptions to simplify the problems have been presented based on (1) the analogy between the elastic solution in the linear elastic indentation problem and the elastic-plastic solution derived from Meyer’s law, (2) the concept of the equivalent spherical indenter for a conical (or pyramid) indenter, and (3) Euler’s formula which relate a spherical surface with a general curved surface, in this paper. By means of these assumptions, the calculating formulas of the corrective value (or coefficient) of the hardness value measured on a curved surface specimen have been given. To examine whether the formulas obtained in this paper are right or not, we compare them with the experimental results. It is shown that all the theoretical values seem to agree with experimental data.</description><identifier>ISSN: 0020-7403</identifier><identifier>EISSN: 1879-2162</identifier><identifier>DOI: 10.1016/S0020-7403(98)00001-0</identifier><identifier>CODEN: IMSCAW</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>corrective value ; curved surface specimen ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; indented hardness ; Measurement and testing methods ; Measurement methods and techniques in continuum mechanics of solids ; Mechanical contact (friction...) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Tribology and mechanical contacts</subject><ispartof>International journal of mechanical sciences, 1998-12, Vol.40 (12), p.1191-1208</ispartof><rights>1998 Elsevier Science Ltd</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-94dbbbd63a4210ffdd6a21268551bfe73dd797b1962f68d0d3a7670046fdaed43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020740398000010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2319139$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bingzheng, Gai</creatorcontrib><title>The correction of hardness value measured on a curved surface specimen</title><title>International journal of mechanical sciences</title><description>In view of the difficulties in solving the hardness problems, the assumptions to simplify the problems have been presented based on (1) the analogy between the elastic solution in the linear elastic indentation problem and the elastic-plastic solution derived from Meyer’s law, (2) the concept of the equivalent spherical indenter for a conical (or pyramid) indenter, and (3) Euler’s formula which relate a spherical surface with a general curved surface, in this paper. By means of these assumptions, the calculating formulas of the corrective value (or coefficient) of the hardness value measured on a curved surface specimen have been given. To examine whether the formulas obtained in this paper are right or not, we compare them with the experimental results. It is shown that all the theoretical values seem to agree with experimental data.</description><subject>corrective value</subject><subject>curved surface specimen</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>indented hardness</subject><subject>Measurement and testing methods</subject><subject>Measurement methods and techniques in continuum mechanics of solids</subject><subject>Mechanical contact (friction...)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Tribology and mechanical contacts</subject><issn>0020-7403</issn><issn>1879-2162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QchBRA-r-dhNNieRYlUoeLCeQzaZ0Mh2tybdgv_e9INezSVh8sw7zIPQNSUPlFDx-EkII4UsCb9T9T3JhxbkBI1oLVXBqGCnaHREztFFSt8ZkaTiIzSdLwDbPkaw69B3uPd4YaLrICW8Me0AeAkmDREczr8G2yFu8jtXvLGA0wpsWEJ3ic68aRNcHe4x-pq-zCdvxezj9X3yPCssp9W6UKVrmsYJbkpGiffOCcMoE3VV0caD5M5JJRuqBPOidsRxI4UkpBTeGXAlH6Pbfe4q9j8DpLVehmShbU0H_ZB0jiIlpyyD1R60sU8pgterGJYm_mpK9Naa3lnTWyVa1XpnTZPcd3MYYJI1rY-msyEdmxmninKVsac9BnnZTYCokw3QWXBha1K7Pvwz6A-6pYCU</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Bingzheng, Gai</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19981201</creationdate><title>The correction of hardness value measured on a curved surface specimen</title><author>Bingzheng, Gai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-94dbbbd63a4210ffdd6a21268551bfe73dd797b1962f68d0d3a7670046fdaed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>corrective value</topic><topic>curved surface specimen</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>indented hardness</topic><topic>Measurement and testing methods</topic><topic>Measurement methods and techniques in continuum mechanics of solids</topic><topic>Mechanical contact (friction...)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Tribology and mechanical contacts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bingzheng, Gai</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>International journal of mechanical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bingzheng, Gai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The correction of hardness value measured on a curved surface specimen</atitle><jtitle>International journal of mechanical sciences</jtitle><date>1998-12-01</date><risdate>1998</risdate><volume>40</volume><issue>12</issue><spage>1191</spage><epage>1208</epage><pages>1191-1208</pages><issn>0020-7403</issn><eissn>1879-2162</eissn><coden>IMSCAW</coden><abstract>In view of the difficulties in solving the hardness problems, the assumptions to simplify the problems have been presented based on (1) the analogy between the elastic solution in the linear elastic indentation problem and the elastic-plastic solution derived from Meyer’s law, (2) the concept of the equivalent spherical indenter for a conical (or pyramid) indenter, and (3) Euler’s formula which relate a spherical surface with a general curved surface, in this paper. By means of these assumptions, the calculating formulas of the corrective value (or coefficient) of the hardness value measured on a curved surface specimen have been given. To examine whether the formulas obtained in this paper are right or not, we compare them with the experimental results. It is shown that all the theoretical values seem to agree with experimental data.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0020-7403(98)00001-0</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7403
ispartof International journal of mechanical sciences, 1998-12, Vol.40 (12), p.1191-1208
issn 0020-7403
1879-2162
language eng
recordid cdi_proquest_miscellaneous_26804312
source Elsevier ScienceDirect Journals
subjects corrective value
curved surface specimen
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
indented hardness
Measurement and testing methods
Measurement methods and techniques in continuum mechanics of solids
Mechanical contact (friction...)
Physics
Solid mechanics
Structural and continuum mechanics
Tribology and mechanical contacts
title The correction of hardness value measured on a curved surface specimen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A00%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20correction%20of%20hardness%20value%20measured%20on%20a%20curved%20surface%20specimen&rft.jtitle=International%20journal%20of%20mechanical%20sciences&rft.au=Bingzheng,%20Gai&rft.date=1998-12-01&rft.volume=40&rft.issue=12&rft.spage=1191&rft.epage=1208&rft.pages=1191-1208&rft.issn=0020-7403&rft.eissn=1879-2162&rft.coden=IMSCAW&rft_id=info:doi/10.1016/S0020-7403(98)00001-0&rft_dat=%3Cproquest_cross%3E26804312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26804312&rft_id=info:pmid/&rft_els_id=S0020740398000010&rfr_iscdi=true