An Ultra-Energy-Efficient and High Accuracy ECG Classification Processor With SNN Inference Assisted by On-Chip ANN Learning
The ECG classification processor is a key component in wearable intelligent ECG monitoring devices which monitor the ECG signals in real time and detect the abnormality automatically. The state-of-the-art ECG classification processors for wearable intelligent ECG monitoring devices are faced with tw...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on biomedical circuits and systems 2022-10, Vol.16 (5), p.832-841 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 841 |
---|---|
container_issue | 5 |
container_start_page | 832 |
container_title | IEEE transactions on biomedical circuits and systems |
container_volume | 16 |
creator | Mao, Ruixin Li, Sixu Zhang, Zhaomin Xia, Zihan Xiao, Jianbiao Zhu, Zixuan Liu, Jiahao Shan, Weiwei Chang, Liang Zhou, Jun |
description | The ECG classification processor is a key component in wearable intelligent ECG monitoring devices which monitor the ECG signals in real time and detect the abnormality automatically. The state-of-the-art ECG classification processors for wearable intelligent ECG monitoring devices are faced with two challenges, including ultra-low energy consumption demand and high classification accuracy demand against patient-to-patient variability. To address the above two challenges, in this work, an ultra-energy-efficient ECG classification processor with high classification accuracy is proposed. Several design techniques have been proposed, including a reconfigurable SNN/ANN inference architecture for reducing energy consumption while maintaining classification accuracy, a reconfigurable on-chip learning architecture for improving the classification accuracy against patent-to-patient variability, and a dual-purpose binary encoding scheme of ECG heartbeats for further reducing the energy consumption. Fabricated with a 28nm CMOS technology, the proposed design consumes extremely low classification energy (0.3μJ) while achieving high classification accuracy (97.36%) against patient-to-patient variability, outperforming several state-of-the-art designs. |
doi_str_mv | 10.1109/TBCAS.2022.3185720 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2680237641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9804873</ieee_id><sourcerecordid>2680237641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-2aeb5de05ae9a957c53ba60ea54afb7ad92c830b03c242ef8de71e84b73791553</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0Eoh_wB-BiiQuXDfbYjtfHZRXaSlGL1FYcLa93NnG19QZ7c4jEj8dpKg6cZg7PO5qZh5BPnC04Z-bbw_e2uV8AA1gIXisN7A0550ayyhjD3h57AZVUUp2Ri5yfGFNLMPCenAmlhV6COid_mkgfxzm5ahUxbQ7VahiCDxhn6mJPr8NmSxvv98n5A121V7QdXc6hMG4OU6Q_0-Qx5ynRX2He0vvbW3oTB0wYPdKmkHnGnnYHeherdht2tCnEGl2KIW4-kHeDGzN-fK2X5PHH6qG9rtZ3Vzdts648qHquwGGnemTKoXFGaa9E55YMnZJu6LTrDfhasI4JDxJwqHvUHGvZlSMNV0pckq-nubs0_d5jnu1zyB7H0UWc9tnCsmZQHiJ5Qb_8hz5N-xTLdha0BM3KO02h4ET5NOWccLC7FJ5dOljO7NGNfXFjj27sq5sS-nwKBUT8FzA1k7UW4i_3qoft</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742704549</pqid></control><display><type>article</type><title>An Ultra-Energy-Efficient and High Accuracy ECG Classification Processor With SNN Inference Assisted by On-Chip ANN Learning</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Mao, Ruixin ; Li, Sixu ; Zhang, Zhaomin ; Xia, Zihan ; Xiao, Jianbiao ; Zhu, Zixuan ; Liu, Jiahao ; Shan, Weiwei ; Chang, Liang ; Zhou, Jun</creator><creatorcontrib>Mao, Ruixin ; Li, Sixu ; Zhang, Zhaomin ; Xia, Zihan ; Xiao, Jianbiao ; Zhu, Zixuan ; Liu, Jiahao ; Shan, Weiwei ; Chang, Liang ; Zhou, Jun</creatorcontrib><description>The ECG classification processor is a key component in wearable intelligent ECG monitoring devices which monitor the ECG signals in real time and detect the abnormality automatically. The state-of-the-art ECG classification processors for wearable intelligent ECG monitoring devices are faced with two challenges, including ultra-low energy consumption demand and high classification accuracy demand against patient-to-patient variability. To address the above two challenges, in this work, an ultra-energy-efficient ECG classification processor with high classification accuracy is proposed. Several design techniques have been proposed, including a reconfigurable SNN/ANN inference architecture for reducing energy consumption while maintaining classification accuracy, a reconfigurable on-chip learning architecture for improving the classification accuracy against patent-to-patient variability, and a dual-purpose binary encoding scheme of ECG heartbeats for further reducing the energy consumption. Fabricated with a 28nm CMOS technology, the proposed design consumes extremely low classification energy (0.3μJ) while achieving high classification accuracy (97.36%) against patient-to-patient variability, outperforming several state-of-the-art designs.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2022.3185720</identifier><identifier>PMID: 35737625</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; ANN ; Biological neural networks ; Classification ; Computational modeling ; ECG ; EKG ; Electrocardiography ; Energy consumption ; Energy efficiency ; Inference ; Learning ; Microprocessors ; Monitoring ; Neurons ; on-chip learning ; Power demand ; processor ; Reconfiguration ; SNN ; Wearable technology</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2022-10, Vol.16 (5), p.832-841</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-2aeb5de05ae9a957c53ba60ea54afb7ad92c830b03c242ef8de71e84b73791553</citedby><cites>FETCH-LOGICAL-c258t-2aeb5de05ae9a957c53ba60ea54afb7ad92c830b03c242ef8de71e84b73791553</cites><orcidid>0000-0003-1672-2422 ; 0000-0003-2098-9621 ; 0000-0002-7776-2439 ; 0000-0002-7535-4378 ; 0000-0002-5409-321X ; 0000-0002-6685-5576 ; 0000-0001-5520-1326</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9804873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9804873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mao, Ruixin</creatorcontrib><creatorcontrib>Li, Sixu</creatorcontrib><creatorcontrib>Zhang, Zhaomin</creatorcontrib><creatorcontrib>Xia, Zihan</creatorcontrib><creatorcontrib>Xiao, Jianbiao</creatorcontrib><creatorcontrib>Zhu, Zixuan</creatorcontrib><creatorcontrib>Liu, Jiahao</creatorcontrib><creatorcontrib>Shan, Weiwei</creatorcontrib><creatorcontrib>Chang, Liang</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><title>An Ultra-Energy-Efficient and High Accuracy ECG Classification Processor With SNN Inference Assisted by On-Chip ANN Learning</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><description>The ECG classification processor is a key component in wearable intelligent ECG monitoring devices which monitor the ECG signals in real time and detect the abnormality automatically. The state-of-the-art ECG classification processors for wearable intelligent ECG monitoring devices are faced with two challenges, including ultra-low energy consumption demand and high classification accuracy demand against patient-to-patient variability. To address the above two challenges, in this work, an ultra-energy-efficient ECG classification processor with high classification accuracy is proposed. Several design techniques have been proposed, including a reconfigurable SNN/ANN inference architecture for reducing energy consumption while maintaining classification accuracy, a reconfigurable on-chip learning architecture for improving the classification accuracy against patent-to-patient variability, and a dual-purpose binary encoding scheme of ECG heartbeats for further reducing the energy consumption. Fabricated with a 28nm CMOS technology, the proposed design consumes extremely low classification energy (0.3μJ) while achieving high classification accuracy (97.36%) against patient-to-patient variability, outperforming several state-of-the-art designs.</description><subject>Accuracy</subject><subject>ANN</subject><subject>Biological neural networks</subject><subject>Classification</subject><subject>Computational modeling</subject><subject>ECG</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Inference</subject><subject>Learning</subject><subject>Microprocessors</subject><subject>Monitoring</subject><subject>Neurons</subject><subject>on-chip learning</subject><subject>Power demand</subject><subject>processor</subject><subject>Reconfiguration</subject><subject>SNN</subject><subject>Wearable technology</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkU1vEzEQhi0Eoh_wB-BiiQuXDfbYjtfHZRXaSlGL1FYcLa93NnG19QZ7c4jEj8dpKg6cZg7PO5qZh5BPnC04Z-bbw_e2uV8AA1gIXisN7A0550ayyhjD3h57AZVUUp2Ri5yfGFNLMPCenAmlhV6COid_mkgfxzm5ahUxbQ7VahiCDxhn6mJPr8NmSxvv98n5A121V7QdXc6hMG4OU6Q_0-Qx5ynRX2He0vvbW3oTB0wYPdKmkHnGnnYHeherdht2tCnEGl2KIW4-kHeDGzN-fK2X5PHH6qG9rtZ3Vzdts648qHquwGGnemTKoXFGaa9E55YMnZJu6LTrDfhasI4JDxJwqHvUHGvZlSMNV0pckq-nubs0_d5jnu1zyB7H0UWc9tnCsmZQHiJ5Qb_8hz5N-xTLdha0BM3KO02h4ET5NOWccLC7FJ5dOljO7NGNfXFjj27sq5sS-nwKBUT8FzA1k7UW4i_3qoft</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Mao, Ruixin</creator><creator>Li, Sixu</creator><creator>Zhang, Zhaomin</creator><creator>Xia, Zihan</creator><creator>Xiao, Jianbiao</creator><creator>Zhu, Zixuan</creator><creator>Liu, Jiahao</creator><creator>Shan, Weiwei</creator><creator>Chang, Liang</creator><creator>Zhou, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1672-2422</orcidid><orcidid>https://orcid.org/0000-0003-2098-9621</orcidid><orcidid>https://orcid.org/0000-0002-7776-2439</orcidid><orcidid>https://orcid.org/0000-0002-7535-4378</orcidid><orcidid>https://orcid.org/0000-0002-5409-321X</orcidid><orcidid>https://orcid.org/0000-0002-6685-5576</orcidid><orcidid>https://orcid.org/0000-0001-5520-1326</orcidid></search><sort><creationdate>20221001</creationdate><title>An Ultra-Energy-Efficient and High Accuracy ECG Classification Processor With SNN Inference Assisted by On-Chip ANN Learning</title><author>Mao, Ruixin ; Li, Sixu ; Zhang, Zhaomin ; Xia, Zihan ; Xiao, Jianbiao ; Zhu, Zixuan ; Liu, Jiahao ; Shan, Weiwei ; Chang, Liang ; Zhou, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-2aeb5de05ae9a957c53ba60ea54afb7ad92c830b03c242ef8de71e84b73791553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>ANN</topic><topic>Biological neural networks</topic><topic>Classification</topic><topic>Computational modeling</topic><topic>ECG</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Inference</topic><topic>Learning</topic><topic>Microprocessors</topic><topic>Monitoring</topic><topic>Neurons</topic><topic>on-chip learning</topic><topic>Power demand</topic><topic>processor</topic><topic>Reconfiguration</topic><topic>SNN</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Ruixin</creatorcontrib><creatorcontrib>Li, Sixu</creatorcontrib><creatorcontrib>Zhang, Zhaomin</creatorcontrib><creatorcontrib>Xia, Zihan</creatorcontrib><creatorcontrib>Xiao, Jianbiao</creatorcontrib><creatorcontrib>Zhu, Zixuan</creatorcontrib><creatorcontrib>Liu, Jiahao</creatorcontrib><creatorcontrib>Shan, Weiwei</creatorcontrib><creatorcontrib>Chang, Liang</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mao, Ruixin</au><au>Li, Sixu</au><au>Zhang, Zhaomin</au><au>Xia, Zihan</au><au>Xiao, Jianbiao</au><au>Zhu, Zixuan</au><au>Liu, Jiahao</au><au>Shan, Weiwei</au><au>Chang, Liang</au><au>Zhou, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ultra-Energy-Efficient and High Accuracy ECG Classification Processor With SNN Inference Assisted by On-Chip ANN Learning</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>16</volume><issue>5</issue><spage>832</spage><epage>841</epage><pages>832-841</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>The ECG classification processor is a key component in wearable intelligent ECG monitoring devices which monitor the ECG signals in real time and detect the abnormality automatically. The state-of-the-art ECG classification processors for wearable intelligent ECG monitoring devices are faced with two challenges, including ultra-low energy consumption demand and high classification accuracy demand against patient-to-patient variability. To address the above two challenges, in this work, an ultra-energy-efficient ECG classification processor with high classification accuracy is proposed. Several design techniques have been proposed, including a reconfigurable SNN/ANN inference architecture for reducing energy consumption while maintaining classification accuracy, a reconfigurable on-chip learning architecture for improving the classification accuracy against patent-to-patient variability, and a dual-purpose binary encoding scheme of ECG heartbeats for further reducing the energy consumption. Fabricated with a 28nm CMOS technology, the proposed design consumes extremely low classification energy (0.3μJ) while achieving high classification accuracy (97.36%) against patient-to-patient variability, outperforming several state-of-the-art designs.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>35737625</pmid><doi>10.1109/TBCAS.2022.3185720</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1672-2422</orcidid><orcidid>https://orcid.org/0000-0003-2098-9621</orcidid><orcidid>https://orcid.org/0000-0002-7776-2439</orcidid><orcidid>https://orcid.org/0000-0002-7535-4378</orcidid><orcidid>https://orcid.org/0000-0002-5409-321X</orcidid><orcidid>https://orcid.org/0000-0002-6685-5576</orcidid><orcidid>https://orcid.org/0000-0001-5520-1326</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4545 |
ispartof | IEEE transactions on biomedical circuits and systems, 2022-10, Vol.16 (5), p.832-841 |
issn | 1932-4545 1940-9990 |
language | eng |
recordid | cdi_proquest_miscellaneous_2680237641 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Accuracy ANN Biological neural networks Classification Computational modeling ECG EKG Electrocardiography Energy consumption Energy efficiency Inference Learning Microprocessors Monitoring Neurons on-chip learning Power demand processor Reconfiguration SNN Wearable technology |
title | An Ultra-Energy-Efficient and High Accuracy ECG Classification Processor With SNN Inference Assisted by On-Chip ANN Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ultra-Energy-Efficient%20and%20High%20Accuracy%20ECG%20Classification%20Processor%20With%20SNN%20Inference%20Assisted%20by%20On-Chip%20ANN%20Learning&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Mao,%20Ruixin&rft.date=2022-10-01&rft.volume=16&rft.issue=5&rft.spage=832&rft.epage=841&rft.pages=832-841&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2022.3185720&rft_dat=%3Cproquest_RIE%3E2680237641%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2742704549&rft_id=info:pmid/35737625&rft_ieee_id=9804873&rfr_iscdi=true |