The effects of sulfur emissions from HSCT aircraft: A 2-D model intercomparison

Four independently formulated two‐dimensional chemical transport models with sulfate aerosol microphysics are used to evaluate the possible effects of sulfur emissions from high‐speed civil transport (HSCT) aircraft operating in the stratosphere in 2015. Emission scenarios studied are those from Bau...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 1998-01, Vol.103 (D1), p.1527-1547
Hauptverfasser: Weisenstein, Debra K., Ko, Malcolm K. W., Dyominov, Igor G., Pitari, Giovanni, Ricciardulli, Lucrezia, Visconti, Guido, Bekki, Slimane
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1547
container_issue D1
container_start_page 1527
container_title Journal of Geophysical Research
container_volume 103
creator Weisenstein, Debra K.
Ko, Malcolm K. W.
Dyominov, Igor G.
Pitari, Giovanni
Ricciardulli, Lucrezia
Visconti, Guido
Bekki, Slimane
description Four independently formulated two‐dimensional chemical transport models with sulfate aerosol microphysics are used to evaluate the possible effects of sulfur emissions from high‐speed civil transport (HSCT) aircraft operating in the stratosphere in 2015. Emission scenarios studied are those from Baughcum and Henderson [1995], while assumptions regarding the form of emitted sulfur are similar to those of Weisenstein et al. [1996]. All models show much larger increases in aerosol surface area when aircraft sulfur is assumed to be emitted as particles of 10 nm radius rather than as gas phase SO2. If we assume an emission index (EI) for SO2 of 0.4 gm (kg fuel burned)−1 in 2015, maximum increases in stratospheric sulfate aerosol surface area range from 0.1 μm2 cm−3 to 0.5 μm2 cm−3 with sulfur emitted as SO2 gas and from 1.0 μm2 cm−3 to 2.5 μm2 cm−3 with sulfur emitted as particles. Model differences in calculated surface area are deemed to be due mainly to differences in model transport. Calculated annual average ozone perturbations due to aircraft emissions with EI(NOx) = 5, EI(H2O) = 1230, and EI(SO2) = 0.4 range from −0.1% to −0.6% at 45°N for sulfur emission as SO2 gas and from −0.4% to −1.5% with sulfur emission as 100% particles. The effect of zonal and temporal inhomogeneities in temperature on heterogeneous reactions rates is accounted for in the Atmospheric and Environmental Research model and the Université degli Studi L'Aquila model and significantly increases the calculated ozone depletion due to HSCT, particularly for the cases with concurrent increases in aerosol surface area. Sensitivities to polar stratospheric clouds, background chlorine amount, additional heterogeneous reactions, and background aerosol loading are also explored.
doi_str_mv 10.1029/97JD02930
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26801546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18120262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4330-127e52ae53954e65e10ba67b990f2d0f30c9fd865c125574efbae61f7f8fe7393</originalsourceid><addsrcrecordid>eNqFkcFKAzEQhoMoWLQH3yAnwcPqJNkku96k1dZSWtCVHkO6neDq7qYmW9S3d6XiTZzLf_m-YZifkDMGlwx4fpXr2bhPAQdkwJlUCefAD8kAWJolwLk-JsMYX6CfVKoU2IAsi2ek6ByWXaTe0bir3S5QbKoYK99G6oJv6PRxVFBbhTJY113TG8qTMW38BmtatR2G0jdbG6ro21Ny5GwdcfiTJ-Tp7rYYTZP5cnI_upknZSoEJIxrlNyiFLlMUUlksLZKr_McHN-AE1DmbpMpWTIupU7RrS0q5rTLHGqRixNyvt-7Df5th7Ez_cUl1rVt0e-i4SoDJlP1L8gy1j9J8f9BlXLIctGDF3uwDD7GgM5sQ9XY8GkYmO8ezG8PPXu1Z9-rGj__Bs1s8jCWUn0byd6oYocfv4YNr0ZpoaVZLSZmAsVK3K0WRosvSw2VEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16420893</pqid></control><display><type>article</type><title>The effects of sulfur emissions from HSCT aircraft: A 2-D model intercomparison</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Weisenstein, Debra K. ; Ko, Malcolm K. W. ; Dyominov, Igor G. ; Pitari, Giovanni ; Ricciardulli, Lucrezia ; Visconti, Guido ; Bekki, Slimane</creator><creatorcontrib>Weisenstein, Debra K. ; Ko, Malcolm K. W. ; Dyominov, Igor G. ; Pitari, Giovanni ; Ricciardulli, Lucrezia ; Visconti, Guido ; Bekki, Slimane</creatorcontrib><description>Four independently formulated two‐dimensional chemical transport models with sulfate aerosol microphysics are used to evaluate the possible effects of sulfur emissions from high‐speed civil transport (HSCT) aircraft operating in the stratosphere in 2015. Emission scenarios studied are those from Baughcum and Henderson [1995], while assumptions regarding the form of emitted sulfur are similar to those of Weisenstein et al. [1996]. All models show much larger increases in aerosol surface area when aircraft sulfur is assumed to be emitted as particles of 10 nm radius rather than as gas phase SO2. If we assume an emission index (EI) for SO2 of 0.4 gm (kg fuel burned)−1 in 2015, maximum increases in stratospheric sulfate aerosol surface area range from 0.1 μm2 cm−3 to 0.5 μm2 cm−3 with sulfur emitted as SO2 gas and from 1.0 μm2 cm−3 to 2.5 μm2 cm−3 with sulfur emitted as particles. Model differences in calculated surface area are deemed to be due mainly to differences in model transport. Calculated annual average ozone perturbations due to aircraft emissions with EI(NOx) = 5, EI(H2O) = 1230, and EI(SO2) = 0.4 range from −0.1% to −0.6% at 45°N for sulfur emission as SO2 gas and from −0.4% to −1.5% with sulfur emission as 100% particles. The effect of zonal and temporal inhomogeneities in temperature on heterogeneous reactions rates is accounted for in the Atmospheric and Environmental Research model and the Université degli Studi L'Aquila model and significantly increases the calculated ozone depletion due to HSCT, particularly for the cases with concurrent increases in aerosol surface area. Sensitivities to polar stratospheric clouds, background chlorine amount, additional heterogeneous reactions, and background aerosol loading are also explored.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/97JD02930</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><ispartof>Journal of Geophysical Research, 1998-01, Vol.103 (D1), p.1527-1547</ispartof><rights>Copyright 1998 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4330-127e52ae53954e65e10ba67b990f2d0f30c9fd865c125574efbae61f7f8fe7393</citedby><cites>FETCH-LOGICAL-c4330-127e52ae53954e65e10ba67b990f2d0f30c9fd865c125574efbae61f7f8fe7393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F97JD02930$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F97JD02930$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Weisenstein, Debra K.</creatorcontrib><creatorcontrib>Ko, Malcolm K. W.</creatorcontrib><creatorcontrib>Dyominov, Igor G.</creatorcontrib><creatorcontrib>Pitari, Giovanni</creatorcontrib><creatorcontrib>Ricciardulli, Lucrezia</creatorcontrib><creatorcontrib>Visconti, Guido</creatorcontrib><creatorcontrib>Bekki, Slimane</creatorcontrib><title>The effects of sulfur emissions from HSCT aircraft: A 2-D model intercomparison</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>Four independently formulated two‐dimensional chemical transport models with sulfate aerosol microphysics are used to evaluate the possible effects of sulfur emissions from high‐speed civil transport (HSCT) aircraft operating in the stratosphere in 2015. Emission scenarios studied are those from Baughcum and Henderson [1995], while assumptions regarding the form of emitted sulfur are similar to those of Weisenstein et al. [1996]. All models show much larger increases in aerosol surface area when aircraft sulfur is assumed to be emitted as particles of 10 nm radius rather than as gas phase SO2. If we assume an emission index (EI) for SO2 of 0.4 gm (kg fuel burned)−1 in 2015, maximum increases in stratospheric sulfate aerosol surface area range from 0.1 μm2 cm−3 to 0.5 μm2 cm−3 with sulfur emitted as SO2 gas and from 1.0 μm2 cm−3 to 2.5 μm2 cm−3 with sulfur emitted as particles. Model differences in calculated surface area are deemed to be due mainly to differences in model transport. Calculated annual average ozone perturbations due to aircraft emissions with EI(NOx) = 5, EI(H2O) = 1230, and EI(SO2) = 0.4 range from −0.1% to −0.6% at 45°N for sulfur emission as SO2 gas and from −0.4% to −1.5% with sulfur emission as 100% particles. The effect of zonal and temporal inhomogeneities in temperature on heterogeneous reactions rates is accounted for in the Atmospheric and Environmental Research model and the Université degli Studi L'Aquila model and significantly increases the calculated ozone depletion due to HSCT, particularly for the cases with concurrent increases in aerosol surface area. Sensitivities to polar stratospheric clouds, background chlorine amount, additional heterogeneous reactions, and background aerosol loading are also explored.</description><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkcFKAzEQhoMoWLQH3yAnwcPqJNkku96k1dZSWtCVHkO6neDq7qYmW9S3d6XiTZzLf_m-YZifkDMGlwx4fpXr2bhPAQdkwJlUCefAD8kAWJolwLk-JsMYX6CfVKoU2IAsi2ek6ByWXaTe0bir3S5QbKoYK99G6oJv6PRxVFBbhTJY113TG8qTMW38BmtatR2G0jdbG6ro21Ny5GwdcfiTJ-Tp7rYYTZP5cnI_upknZSoEJIxrlNyiFLlMUUlksLZKr_McHN-AE1DmbpMpWTIupU7RrS0q5rTLHGqRixNyvt-7Df5th7Ez_cUl1rVt0e-i4SoDJlP1L8gy1j9J8f9BlXLIctGDF3uwDD7GgM5sQ9XY8GkYmO8ezG8PPXu1Z9-rGj__Bs1s8jCWUn0byd6oYocfv4YNr0ZpoaVZLSZmAsVK3K0WRosvSw2VEw</recordid><startdate>19980120</startdate><enddate>19980120</enddate><creator>Weisenstein, Debra K.</creator><creator>Ko, Malcolm K. W.</creator><creator>Dyominov, Igor G.</creator><creator>Pitari, Giovanni</creator><creator>Ricciardulli, Lucrezia</creator><creator>Visconti, Guido</creator><creator>Bekki, Slimane</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>C1K</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19980120</creationdate><title>The effects of sulfur emissions from HSCT aircraft: A 2-D model intercomparison</title><author>Weisenstein, Debra K. ; Ko, Malcolm K. W. ; Dyominov, Igor G. ; Pitari, Giovanni ; Ricciardulli, Lucrezia ; Visconti, Guido ; Bekki, Slimane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4330-127e52ae53954e65e10ba67b990f2d0f30c9fd865c125574efbae61f7f8fe7393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weisenstein, Debra K.</creatorcontrib><creatorcontrib>Ko, Malcolm K. W.</creatorcontrib><creatorcontrib>Dyominov, Igor G.</creatorcontrib><creatorcontrib>Pitari, Giovanni</creatorcontrib><creatorcontrib>Ricciardulli, Lucrezia</creatorcontrib><creatorcontrib>Visconti, Guido</creatorcontrib><creatorcontrib>Bekki, Slimane</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weisenstein, Debra K.</au><au>Ko, Malcolm K. W.</au><au>Dyominov, Igor G.</au><au>Pitari, Giovanni</au><au>Ricciardulli, Lucrezia</au><au>Visconti, Guido</au><au>Bekki, Slimane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of sulfur emissions from HSCT aircraft: A 2-D model intercomparison</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>1998-01-20</date><risdate>1998</risdate><volume>103</volume><issue>D1</issue><spage>1527</spage><epage>1547</epage><pages>1527-1547</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Four independently formulated two‐dimensional chemical transport models with sulfate aerosol microphysics are used to evaluate the possible effects of sulfur emissions from high‐speed civil transport (HSCT) aircraft operating in the stratosphere in 2015. Emission scenarios studied are those from Baughcum and Henderson [1995], while assumptions regarding the form of emitted sulfur are similar to those of Weisenstein et al. [1996]. All models show much larger increases in aerosol surface area when aircraft sulfur is assumed to be emitted as particles of 10 nm radius rather than as gas phase SO2. If we assume an emission index (EI) for SO2 of 0.4 gm (kg fuel burned)−1 in 2015, maximum increases in stratospheric sulfate aerosol surface area range from 0.1 μm2 cm−3 to 0.5 μm2 cm−3 with sulfur emitted as SO2 gas and from 1.0 μm2 cm−3 to 2.5 μm2 cm−3 with sulfur emitted as particles. Model differences in calculated surface area are deemed to be due mainly to differences in model transport. Calculated annual average ozone perturbations due to aircraft emissions with EI(NOx) = 5, EI(H2O) = 1230, and EI(SO2) = 0.4 range from −0.1% to −0.6% at 45°N for sulfur emission as SO2 gas and from −0.4% to −1.5% with sulfur emission as 100% particles. The effect of zonal and temporal inhomogeneities in temperature on heterogeneous reactions rates is accounted for in the Atmospheric and Environmental Research model and the Université degli Studi L'Aquila model and significantly increases the calculated ozone depletion due to HSCT, particularly for the cases with concurrent increases in aerosol surface area. Sensitivities to polar stratospheric clouds, background chlorine amount, additional heterogeneous reactions, and background aerosol loading are also explored.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/97JD02930</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 1998-01, Vol.103 (D1), p.1527-1547
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_26801546
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals; Alma/SFX Local Collection
title The effects of sulfur emissions from HSCT aircraft: A 2-D model intercomparison
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A09%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20sulfur%20emissions%20from%20HSCT%20aircraft:%20A%202-D%20model%20intercomparison&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Weisenstein,%20Debra%20K.&rft.date=1998-01-20&rft.volume=103&rft.issue=D1&rft.spage=1527&rft.epage=1547&rft.pages=1527-1547&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/97JD02930&rft_dat=%3Cproquest_cross%3E18120262%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16420893&rft_id=info:pmid/&rfr_iscdi=true