Multiplicities of covers for sofic shifts
We consider a transitive sofic shift T and a SFT cover f:S→T. We define the multiplicity of the cover(S,f) to be the largest number of preimages of a point. The intrinsic multiplicity ofT is the minimum of the multiplicities over all covers of T, denoted by m(T). Is m(T) computable? We do not answer...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2001-07, Vol.262 (1-2), p.349-375 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 375 |
---|---|
container_issue | 1-2 |
container_start_page | 349 |
container_title | Theoretical computer science |
container_volume | 262 |
creator | Fiebig, Doris Fiebig, Ulf-Rainer Jonoska, Nataša |
description | We consider a transitive sofic shift T and a SFT cover f:S→T. We define the multiplicity of the cover(S,f) to be the largest number of preimages of a point. The intrinsic multiplicity ofT is the minimum of the multiplicities over all covers of T, denoted by m(T). Is m(T) computable? We do not answer this question. However the attempt to solve this problem led us to find sharp estimates for the intrinsic multiplicity, sharpen a result of Williams, and solve a problem posed by Trow. |
doi_str_mv | 10.1016/S0304-3975(00)00278-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26799876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397500002784</els_id><sourcerecordid>26799876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-e7f2ca627570e68279a521f6866c39b3fc95cb725423ee9bbe88235827562dd43</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiDiD2sZpNNsjmJFL-g4kE9h2x2gpFtUzPbQv-9u20Rb85lLs_My_sQcl7Q64IW8uaNclrmXCtxRemEUqaqvDwgo6JSOmdMl4dk9IsckxPEL9qPUHJEJi-rtgvLNrjQBcAs-szFNSTMfEwZRh9chp_Bd3hKjrxtEc72e0w-Hu7fp0_57PXxeXo3yx2XqstBeeasZEooCrJiSlvBCi8rKR3XNfdOC1crJkrGAXRdQ1UxLnpQSNY0JR-Ty93fZYrfK8DOzAM6aFu7gLhCw6TSulKyB8UOdCkiJvBmmcLcpo0pqBnEmK0YM7Q2lJqtGDMEXOwDLDrb-mQXLuCfYy20HLDbHQZ92XWAZNAFWDhoQgLXmSaGf4J-AMihdXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26799876</pqid></control><display><type>article</type><title>Multiplicities of covers for sofic shifts</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fiebig, Doris ; Fiebig, Ulf-Rainer ; Jonoska, Nataša</creator><creatorcontrib>Fiebig, Doris ; Fiebig, Ulf-Rainer ; Jonoska, Nataša</creatorcontrib><description>We consider a transitive sofic shift T and a SFT cover f:S→T. We define the multiplicity of the cover(S,f) to be the largest number of preimages of a point. The intrinsic multiplicity ofT is the minimum of the multiplicities over all covers of T, denoted by m(T). Is m(T) computable? We do not answer this question. However the attempt to solve this problem led us to find sharp estimates for the intrinsic multiplicity, sharpen a result of Williams, and solve a problem posed by Trow.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/S0304-3975(00)00278-4</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Combinatorics ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Exact sciences and technology ; Graph theory ; Mathematics ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Theoretical computer science, 2001-07, Vol.262 (1-2), p.349-375</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-e7f2ca627570e68279a521f6866c39b3fc95cb725423ee9bbe88235827562dd43</citedby><cites>FETCH-LOGICAL-c367t-e7f2ca627570e68279a521f6866c39b3fc95cb725423ee9bbe88235827562dd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-3975(00)00278-4$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1095964$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiebig, Doris</creatorcontrib><creatorcontrib>Fiebig, Ulf-Rainer</creatorcontrib><creatorcontrib>Jonoska, Nataša</creatorcontrib><title>Multiplicities of covers for sofic shifts</title><title>Theoretical computer science</title><description>We consider a transitive sofic shift T and a SFT cover f:S→T. We define the multiplicity of the cover(S,f) to be the largest number of preimages of a point. The intrinsic multiplicity ofT is the minimum of the multiplicities over all covers of T, denoted by m(T). Is m(T) computable? We do not answer this question. However the attempt to solve this problem led us to find sharp estimates for the intrinsic multiplicity, sharpen a result of Williams, and solve a problem posed by Trow.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiDiD2sZpNNsjmJFL-g4kE9h2x2gpFtUzPbQv-9u20Rb85lLs_My_sQcl7Q64IW8uaNclrmXCtxRemEUqaqvDwgo6JSOmdMl4dk9IsckxPEL9qPUHJEJi-rtgvLNrjQBcAs-szFNSTMfEwZRh9chp_Bd3hKjrxtEc72e0w-Hu7fp0_57PXxeXo3yx2XqstBeeasZEooCrJiSlvBCi8rKR3XNfdOC1crJkrGAXRdQ1UxLnpQSNY0JR-Ty93fZYrfK8DOzAM6aFu7gLhCw6TSulKyB8UOdCkiJvBmmcLcpo0pqBnEmK0YM7Q2lJqtGDMEXOwDLDrb-mQXLuCfYy20HLDbHQZ92XWAZNAFWDhoQgLXmSaGf4J-AMihdXc</recordid><startdate>20010706</startdate><enddate>20010706</enddate><creator>Fiebig, Doris</creator><creator>Fiebig, Ulf-Rainer</creator><creator>Jonoska, Nataša</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010706</creationdate><title>Multiplicities of covers for sofic shifts</title><author>Fiebig, Doris ; Fiebig, Ulf-Rainer ; Jonoska, Nataša</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-e7f2ca627570e68279a521f6866c39b3fc95cb725423ee9bbe88235827562dd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiebig, Doris</creatorcontrib><creatorcontrib>Fiebig, Ulf-Rainer</creatorcontrib><creatorcontrib>Jonoska, Nataša</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiebig, Doris</au><au>Fiebig, Ulf-Rainer</au><au>Jonoska, Nataša</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplicities of covers for sofic shifts</atitle><jtitle>Theoretical computer science</jtitle><date>2001-07-06</date><risdate>2001</risdate><volume>262</volume><issue>1-2</issue><spage>349</spage><epage>375</epage><pages>349-375</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>We consider a transitive sofic shift T and a SFT cover f:S→T. We define the multiplicity of the cover(S,f) to be the largest number of preimages of a point. The intrinsic multiplicity ofT is the minimum of the multiplicities over all covers of T, denoted by m(T). Is m(T) computable? We do not answer this question. However the attempt to solve this problem led us to find sharp estimates for the intrinsic multiplicity, sharpen a result of Williams, and solve a problem posed by Trow.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-3975(00)00278-4</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2001-07, Vol.262 (1-2), p.349-375 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_proquest_miscellaneous_26799876 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Combinatorics Combinatorics. Ordered structures Computer science control theory systems Exact sciences and technology Graph theory Mathematics Sciences and techniques of general use Theoretical computing |
title | Multiplicities of covers for sofic shifts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplicities%20of%20covers%20for%20sofic%20shifts&rft.jtitle=Theoretical%20computer%20science&rft.au=Fiebig,%20Doris&rft.date=2001-07-06&rft.volume=262&rft.issue=1-2&rft.spage=349&rft.epage=375&rft.pages=349-375&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/S0304-3975(00)00278-4&rft_dat=%3Cproquest_cross%3E26799876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26799876&rft_id=info:pmid/&rft_els_id=S0304397500002784&rfr_iscdi=true |