Multiplicities of covers for sofic shifts

We consider a transitive sofic shift T and a SFT cover f:S→T. We define the multiplicity of the cover(S,f) to be the largest number of preimages of a point. The intrinsic multiplicity ofT is the minimum of the multiplicities over all covers of T, denoted by m(T). Is m(T) computable? We do not answer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2001-07, Vol.262 (1-2), p.349-375
Hauptverfasser: Fiebig, Doris, Fiebig, Ulf-Rainer, Jonoska, Nataša
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 375
container_issue 1-2
container_start_page 349
container_title Theoretical computer science
container_volume 262
creator Fiebig, Doris
Fiebig, Ulf-Rainer
Jonoska, Nataša
description We consider a transitive sofic shift T and a SFT cover f:S→T. We define the multiplicity of the cover(S,f) to be the largest number of preimages of a point. The intrinsic multiplicity ofT is the minimum of the multiplicities over all covers of T, denoted by m(T). Is m(T) computable? We do not answer this question. However the attempt to solve this problem led us to find sharp estimates for the intrinsic multiplicity, sharpen a result of Williams, and solve a problem posed by Trow.
doi_str_mv 10.1016/S0304-3975(00)00278-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26799876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397500002784</els_id><sourcerecordid>26799876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-e7f2ca627570e68279a521f6866c39b3fc95cb725423ee9bbe88235827562dd43</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiDiD2sZpNNsjmJFL-g4kE9h2x2gpFtUzPbQv-9u20Rb85lLs_My_sQcl7Q64IW8uaNclrmXCtxRemEUqaqvDwgo6JSOmdMl4dk9IsckxPEL9qPUHJEJi-rtgvLNrjQBcAs-szFNSTMfEwZRh9chp_Bd3hKjrxtEc72e0w-Hu7fp0_57PXxeXo3yx2XqstBeeasZEooCrJiSlvBCi8rKR3XNfdOC1crJkrGAXRdQ1UxLnpQSNY0JR-Ty93fZYrfK8DOzAM6aFu7gLhCw6TSulKyB8UOdCkiJvBmmcLcpo0pqBnEmK0YM7Q2lJqtGDMEXOwDLDrb-mQXLuCfYy20HLDbHQZ92XWAZNAFWDhoQgLXmSaGf4J-AMihdXc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26799876</pqid></control><display><type>article</type><title>Multiplicities of covers for sofic shifts</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fiebig, Doris ; Fiebig, Ulf-Rainer ; Jonoska, Nataša</creator><creatorcontrib>Fiebig, Doris ; Fiebig, Ulf-Rainer ; Jonoska, Nataša</creatorcontrib><description>We consider a transitive sofic shift T and a SFT cover f:S→T. We define the multiplicity of the cover(S,f) to be the largest number of preimages of a point. The intrinsic multiplicity ofT is the minimum of the multiplicities over all covers of T, denoted by m(T). Is m(T) computable? We do not answer this question. However the attempt to solve this problem led us to find sharp estimates for the intrinsic multiplicity, sharpen a result of Williams, and solve a problem posed by Trow.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/S0304-3975(00)00278-4</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Combinatorics ; Combinatorics. Ordered structures ; Computer science; control theory; systems ; Exact sciences and technology ; Graph theory ; Mathematics ; Sciences and techniques of general use ; Theoretical computing</subject><ispartof>Theoretical computer science, 2001-07, Vol.262 (1-2), p.349-375</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-e7f2ca627570e68279a521f6866c39b3fc95cb725423ee9bbe88235827562dd43</citedby><cites>FETCH-LOGICAL-c367t-e7f2ca627570e68279a521f6866c39b3fc95cb725423ee9bbe88235827562dd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0304-3975(00)00278-4$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1095964$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fiebig, Doris</creatorcontrib><creatorcontrib>Fiebig, Ulf-Rainer</creatorcontrib><creatorcontrib>Jonoska, Nataša</creatorcontrib><title>Multiplicities of covers for sofic shifts</title><title>Theoretical computer science</title><description>We consider a transitive sofic shift T and a SFT cover f:S→T. We define the multiplicity of the cover(S,f) to be the largest number of preimages of a point. The intrinsic multiplicity ofT is the minimum of the multiplicities over all covers of T, denoted by m(T). Is m(T) computable? We do not answer this question. However the attempt to solve this problem led us to find sharp estimates for the intrinsic multiplicity, sharpen a result of Williams, and solve a problem posed by Trow.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiDiD2sZpNNsjmJFL-g4kE9h2x2gpFtUzPbQv-9u20Rb85lLs_My_sQcl7Q64IW8uaNclrmXCtxRemEUqaqvDwgo6JSOmdMl4dk9IsckxPEL9qPUHJEJi-rtgvLNrjQBcAs-szFNSTMfEwZRh9chp_Bd3hKjrxtEc72e0w-Hu7fp0_57PXxeXo3yx2XqstBeeasZEooCrJiSlvBCi8rKR3XNfdOC1crJkrGAXRdQ1UxLnpQSNY0JR-Ty93fZYrfK8DOzAM6aFu7gLhCw6TSulKyB8UOdCkiJvBmmcLcpo0pqBnEmK0YM7Q2lJqtGDMEXOwDLDrb-mQXLuCfYy20HLDbHQZ92XWAZNAFWDhoQgLXmSaGf4J-AMihdXc</recordid><startdate>20010706</startdate><enddate>20010706</enddate><creator>Fiebig, Doris</creator><creator>Fiebig, Ulf-Rainer</creator><creator>Jonoska, Nataša</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010706</creationdate><title>Multiplicities of covers for sofic shifts</title><author>Fiebig, Doris ; Fiebig, Ulf-Rainer ; Jonoska, Nataša</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-e7f2ca627570e68279a521f6866c39b3fc95cb725423ee9bbe88235827562dd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fiebig, Doris</creatorcontrib><creatorcontrib>Fiebig, Ulf-Rainer</creatorcontrib><creatorcontrib>Jonoska, Nataša</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fiebig, Doris</au><au>Fiebig, Ulf-Rainer</au><au>Jonoska, Nataša</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplicities of covers for sofic shifts</atitle><jtitle>Theoretical computer science</jtitle><date>2001-07-06</date><risdate>2001</risdate><volume>262</volume><issue>1-2</issue><spage>349</spage><epage>375</epage><pages>349-375</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>We consider a transitive sofic shift T and a SFT cover f:S→T. We define the multiplicity of the cover(S,f) to be the largest number of preimages of a point. The intrinsic multiplicity ofT is the minimum of the multiplicities over all covers of T, denoted by m(T). Is m(T) computable? We do not answer this question. However the attempt to solve this problem led us to find sharp estimates for the intrinsic multiplicity, sharpen a result of Williams, and solve a problem posed by Trow.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0304-3975(00)00278-4</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2001-07, Vol.262 (1-2), p.349-375
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_26799876
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Combinatorics
Combinatorics. Ordered structures
Computer science
control theory
systems
Exact sciences and technology
Graph theory
Mathematics
Sciences and techniques of general use
Theoretical computing
title Multiplicities of covers for sofic shifts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A25%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplicities%20of%20covers%20for%20sofic%20shifts&rft.jtitle=Theoretical%20computer%20science&rft.au=Fiebig,%20Doris&rft.date=2001-07-06&rft.volume=262&rft.issue=1-2&rft.spage=349&rft.epage=375&rft.pages=349-375&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/S0304-3975(00)00278-4&rft_dat=%3Cproquest_cross%3E26799876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26799876&rft_id=info:pmid/&rft_els_id=S0304397500002784&rfr_iscdi=true