3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration

The repair of large bone defects remains a challenging problem in bone tissue engineering. Ischemia and hypoxia in the bone defect area make it difficult for seed cells to survive and differentiate, which fail to perform effective tissue regeneration. Current oxygen-producing materials frequently en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-07, Vol.14 (26), p.29506-29520
Hauptverfasser: Wang, Yihan, Xie, Changnan, Zhang, Zhiming, Liu, Haining, Xu, Haixia, Peng, Ziyue, Liu, Chun, Li, Jianjun, Wang, Chengqiang, Xu, Tao, Zhu, Lixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29520
container_issue 26
container_start_page 29506
container_title ACS applied materials & interfaces
container_volume 14
creator Wang, Yihan
Xie, Changnan
Zhang, Zhiming
Liu, Haining
Xu, Haixia
Peng, Ziyue
Liu, Chun
Li, Jianjun
Wang, Chengqiang
Xu, Tao
Zhu, Lixin
description The repair of large bone defects remains a challenging problem in bone tissue engineering. Ischemia and hypoxia in the bone defect area make it difficult for seed cells to survive and differentiate, which fail to perform effective tissue regeneration. Current oxygen-producing materials frequently encounter problems such as a rapid degradation rate, insufficient mechanical properties, difficult molding, and cumbersome fabrication. Here, a novel three-dimensional (3D) printed integrated bionic oxygenated scaffold was fabricated with gelatin-CaO2 microspheres, polycaprolactone (PCL), and nanohydroxyapatite (nHA) using low-temperature molding 3D printing technology. The scaffold had outstanding mechanical properties with bionic hierarchical porous structures. In vitro reports showed that the scaffold exhibited excellent cytocompatibility and could release O2 sustainably for more than 2 weeks, which significantly enhanced the survival, growth, and osteogenic differentiation of bone marrow mesenchymal stem cells under hypoxia. In vivo experiments revealed that the scaffold facilitated efficient bone repair after it was transplanted into a rabbit calvarial defect model. This result may be due to the scaffolds reducing hypoxia-inducible factor-1α accumulation, improving the expression of osteogenic regulatory transcription factors, and accelerating osteogenesis. In summary, the integrated bionic PCL/nHA/CaO2 scaffold had excellent capabilities in sustainable O2 release and bone regeneration, which provided a promising clinical strategy for bone defect repair.
doi_str_mv 10.1021/acsami.2c04378
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2679699801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679699801</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-8d60a05cf9e39746e232f44ac66e00f0b24fe998fa3549bda13bc42c339264193</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKtXz3sUYevkY7Obo1WrhULFj3NIs5OyZbupSQv2vzd1izcvM4-Z3xuYR8g1hREFRu-MjWbdjJgFwcvqhAyoEiKvWMFO_7QQ5-QixhWA5AyKAZnwx-w1NN0W62ya6jKYgxw3vmtsNv_eL7H7nbxb45xv68z5kI19h9kbph0mPrGX5MyZNuLVsQ_J5-Tp4-Eln82fpw_3s9xwKLd5VUswUFinkKtSSGScOSGMlRIBHCyYcKhU5QwvhFrUhvKFFcxyrpgUVPEhuenvboL_2mHc6nUTLbat6dDvomayVDIdAJrQUY_a4GMM6PQmNGsT9pqCPgSm-8D0MbBkuO0Naa5Xfhe69Ml_8A9oRmxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679699801</pqid></control><display><type>article</type><title>3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration</title><source>American Chemical Society Journals</source><creator>Wang, Yihan ; Xie, Changnan ; Zhang, Zhiming ; Liu, Haining ; Xu, Haixia ; Peng, Ziyue ; Liu, Chun ; Li, Jianjun ; Wang, Chengqiang ; Xu, Tao ; Zhu, Lixin</creator><creatorcontrib>Wang, Yihan ; Xie, Changnan ; Zhang, Zhiming ; Liu, Haining ; Xu, Haixia ; Peng, Ziyue ; Liu, Chun ; Li, Jianjun ; Wang, Chengqiang ; Xu, Tao ; Zhu, Lixin</creatorcontrib><description>The repair of large bone defects remains a challenging problem in bone tissue engineering. Ischemia and hypoxia in the bone defect area make it difficult for seed cells to survive and differentiate, which fail to perform effective tissue regeneration. Current oxygen-producing materials frequently encounter problems such as a rapid degradation rate, insufficient mechanical properties, difficult molding, and cumbersome fabrication. Here, a novel three-dimensional (3D) printed integrated bionic oxygenated scaffold was fabricated with gelatin-CaO2 microspheres, polycaprolactone (PCL), and nanohydroxyapatite (nHA) using low-temperature molding 3D printing technology. The scaffold had outstanding mechanical properties with bionic hierarchical porous structures. In vitro reports showed that the scaffold exhibited excellent cytocompatibility and could release O2 sustainably for more than 2 weeks, which significantly enhanced the survival, growth, and osteogenic differentiation of bone marrow mesenchymal stem cells under hypoxia. In vivo experiments revealed that the scaffold facilitated efficient bone repair after it was transplanted into a rabbit calvarial defect model. This result may be due to the scaffolds reducing hypoxia-inducible factor-1α accumulation, improving the expression of osteogenic regulatory transcription factors, and accelerating osteogenesis. In summary, the integrated bionic PCL/nHA/CaO2 scaffold had excellent capabilities in sustainable O2 release and bone regeneration, which provided a promising clinical strategy for bone defect repair.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c04378</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Biological and Medical Applications of Materials and Interfaces</subject><ispartof>ACS applied materials &amp; interfaces, 2022-07, Vol.14 (26), p.29506-29520</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-8d60a05cf9e39746e232f44ac66e00f0b24fe998fa3549bda13bc42c339264193</citedby><cites>FETCH-LOGICAL-a307t-8d60a05cf9e39746e232f44ac66e00f0b24fe998fa3549bda13bc42c339264193</cites><orcidid>0000-0002-5783-6859 ; 0000-0001-5181-6702 ; 0000-0003-3055-3063 ; 0000-0002-3870-0024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c04378$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c04378$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Wang, Yihan</creatorcontrib><creatorcontrib>Xie, Changnan</creatorcontrib><creatorcontrib>Zhang, Zhiming</creatorcontrib><creatorcontrib>Liu, Haining</creatorcontrib><creatorcontrib>Xu, Haixia</creatorcontrib><creatorcontrib>Peng, Ziyue</creatorcontrib><creatorcontrib>Liu, Chun</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Wang, Chengqiang</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Zhu, Lixin</creatorcontrib><title>3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The repair of large bone defects remains a challenging problem in bone tissue engineering. Ischemia and hypoxia in the bone defect area make it difficult for seed cells to survive and differentiate, which fail to perform effective tissue regeneration. Current oxygen-producing materials frequently encounter problems such as a rapid degradation rate, insufficient mechanical properties, difficult molding, and cumbersome fabrication. Here, a novel three-dimensional (3D) printed integrated bionic oxygenated scaffold was fabricated with gelatin-CaO2 microspheres, polycaprolactone (PCL), and nanohydroxyapatite (nHA) using low-temperature molding 3D printing technology. The scaffold had outstanding mechanical properties with bionic hierarchical porous structures. In vitro reports showed that the scaffold exhibited excellent cytocompatibility and could release O2 sustainably for more than 2 weeks, which significantly enhanced the survival, growth, and osteogenic differentiation of bone marrow mesenchymal stem cells under hypoxia. In vivo experiments revealed that the scaffold facilitated efficient bone repair after it was transplanted into a rabbit calvarial defect model. This result may be due to the scaffolds reducing hypoxia-inducible factor-1α accumulation, improving the expression of osteogenic regulatory transcription factors, and accelerating osteogenesis. In summary, the integrated bionic PCL/nHA/CaO2 scaffold had excellent capabilities in sustainable O2 release and bone regeneration, which provided a promising clinical strategy for bone defect repair.</description><subject>Biological and Medical Applications of Materials and Interfaces</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKtXz3sUYevkY7Obo1WrhULFj3NIs5OyZbupSQv2vzd1izcvM4-Z3xuYR8g1hREFRu-MjWbdjJgFwcvqhAyoEiKvWMFO_7QQ5-QixhWA5AyKAZnwx-w1NN0W62ya6jKYgxw3vmtsNv_eL7H7nbxb45xv68z5kI19h9kbph0mPrGX5MyZNuLVsQ_J5-Tp4-Eln82fpw_3s9xwKLd5VUswUFinkKtSSGScOSGMlRIBHCyYcKhU5QwvhFrUhvKFFcxyrpgUVPEhuenvboL_2mHc6nUTLbat6dDvomayVDIdAJrQUY_a4GMM6PQmNGsT9pqCPgSm-8D0MbBkuO0Naa5Xfhe69Ml_8A9oRmxo</recordid><startdate>20220706</startdate><enddate>20220706</enddate><creator>Wang, Yihan</creator><creator>Xie, Changnan</creator><creator>Zhang, Zhiming</creator><creator>Liu, Haining</creator><creator>Xu, Haixia</creator><creator>Peng, Ziyue</creator><creator>Liu, Chun</creator><creator>Li, Jianjun</creator><creator>Wang, Chengqiang</creator><creator>Xu, Tao</creator><creator>Zhu, Lixin</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5783-6859</orcidid><orcidid>https://orcid.org/0000-0001-5181-6702</orcidid><orcidid>https://orcid.org/0000-0003-3055-3063</orcidid><orcidid>https://orcid.org/0000-0002-3870-0024</orcidid></search><sort><creationdate>20220706</creationdate><title>3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration</title><author>Wang, Yihan ; Xie, Changnan ; Zhang, Zhiming ; Liu, Haining ; Xu, Haixia ; Peng, Ziyue ; Liu, Chun ; Li, Jianjun ; Wang, Chengqiang ; Xu, Tao ; Zhu, Lixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-8d60a05cf9e39746e232f44ac66e00f0b24fe998fa3549bda13bc42c339264193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological and Medical Applications of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yihan</creatorcontrib><creatorcontrib>Xie, Changnan</creatorcontrib><creatorcontrib>Zhang, Zhiming</creatorcontrib><creatorcontrib>Liu, Haining</creatorcontrib><creatorcontrib>Xu, Haixia</creatorcontrib><creatorcontrib>Peng, Ziyue</creatorcontrib><creatorcontrib>Liu, Chun</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Wang, Chengqiang</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Zhu, Lixin</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yihan</au><au>Xie, Changnan</au><au>Zhang, Zhiming</au><au>Liu, Haining</au><au>Xu, Haixia</au><au>Peng, Ziyue</au><au>Liu, Chun</au><au>Li, Jianjun</au><au>Wang, Chengqiang</au><au>Xu, Tao</au><au>Zhu, Lixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-07-06</date><risdate>2022</risdate><volume>14</volume><issue>26</issue><spage>29506</spage><epage>29520</epage><pages>29506-29520</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The repair of large bone defects remains a challenging problem in bone tissue engineering. Ischemia and hypoxia in the bone defect area make it difficult for seed cells to survive and differentiate, which fail to perform effective tissue regeneration. Current oxygen-producing materials frequently encounter problems such as a rapid degradation rate, insufficient mechanical properties, difficult molding, and cumbersome fabrication. Here, a novel three-dimensional (3D) printed integrated bionic oxygenated scaffold was fabricated with gelatin-CaO2 microspheres, polycaprolactone (PCL), and nanohydroxyapatite (nHA) using low-temperature molding 3D printing technology. The scaffold had outstanding mechanical properties with bionic hierarchical porous structures. In vitro reports showed that the scaffold exhibited excellent cytocompatibility and could release O2 sustainably for more than 2 weeks, which significantly enhanced the survival, growth, and osteogenic differentiation of bone marrow mesenchymal stem cells under hypoxia. In vivo experiments revealed that the scaffold facilitated efficient bone repair after it was transplanted into a rabbit calvarial defect model. This result may be due to the scaffolds reducing hypoxia-inducible factor-1α accumulation, improving the expression of osteogenic regulatory transcription factors, and accelerating osteogenesis. In summary, the integrated bionic PCL/nHA/CaO2 scaffold had excellent capabilities in sustainable O2 release and bone regeneration, which provided a promising clinical strategy for bone defect repair.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c04378</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5783-6859</orcidid><orcidid>https://orcid.org/0000-0001-5181-6702</orcidid><orcidid>https://orcid.org/0000-0003-3055-3063</orcidid><orcidid>https://orcid.org/0000-0002-3870-0024</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-07, Vol.14 (26), p.29506-29520
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2679699801
source American Chemical Society Journals
subjects Biological and Medical Applications of Materials and Interfaces
title 3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printed%20Integrated%20Bionic%20Oxygenated%20Scaffold%20for%20Bone%20Regeneration&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Yihan&rft.date=2022-07-06&rft.volume=14&rft.issue=26&rft.spage=29506&rft.epage=29520&rft.pages=29506-29520&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c04378&rft_dat=%3Cproquest_cross%3E2679699801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679699801&rft_id=info:pmid/&rfr_iscdi=true