3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration
The repair of large bone defects remains a challenging problem in bone tissue engineering. Ischemia and hypoxia in the bone defect area make it difficult for seed cells to survive and differentiate, which fail to perform effective tissue regeneration. Current oxygen-producing materials frequently en...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-07, Vol.14 (26), p.29506-29520 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29520 |
---|---|
container_issue | 26 |
container_start_page | 29506 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Wang, Yihan Xie, Changnan Zhang, Zhiming Liu, Haining Xu, Haixia Peng, Ziyue Liu, Chun Li, Jianjun Wang, Chengqiang Xu, Tao Zhu, Lixin |
description | The repair of large bone defects remains a challenging problem in bone tissue engineering. Ischemia and hypoxia in the bone defect area make it difficult for seed cells to survive and differentiate, which fail to perform effective tissue regeneration. Current oxygen-producing materials frequently encounter problems such as a rapid degradation rate, insufficient mechanical properties, difficult molding, and cumbersome fabrication. Here, a novel three-dimensional (3D) printed integrated bionic oxygenated scaffold was fabricated with gelatin-CaO2 microspheres, polycaprolactone (PCL), and nanohydroxyapatite (nHA) using low-temperature molding 3D printing technology. The scaffold had outstanding mechanical properties with bionic hierarchical porous structures. In vitro reports showed that the scaffold exhibited excellent cytocompatibility and could release O2 sustainably for more than 2 weeks, which significantly enhanced the survival, growth, and osteogenic differentiation of bone marrow mesenchymal stem cells under hypoxia. In vivo experiments revealed that the scaffold facilitated efficient bone repair after it was transplanted into a rabbit calvarial defect model. This result may be due to the scaffolds reducing hypoxia-inducible factor-1α accumulation, improving the expression of osteogenic regulatory transcription factors, and accelerating osteogenesis. In summary, the integrated bionic PCL/nHA/CaO2 scaffold had excellent capabilities in sustainable O2 release and bone regeneration, which provided a promising clinical strategy for bone defect repair. |
doi_str_mv | 10.1021/acsami.2c04378 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2679699801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679699801</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-8d60a05cf9e39746e232f44ac66e00f0b24fe998fa3549bda13bc42c339264193</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKtXz3sUYevkY7Obo1WrhULFj3NIs5OyZbupSQv2vzd1izcvM4-Z3xuYR8g1hREFRu-MjWbdjJgFwcvqhAyoEiKvWMFO_7QQ5-QixhWA5AyKAZnwx-w1NN0W62ya6jKYgxw3vmtsNv_eL7H7nbxb45xv68z5kI19h9kbph0mPrGX5MyZNuLVsQ_J5-Tp4-Eln82fpw_3s9xwKLd5VUswUFinkKtSSGScOSGMlRIBHCyYcKhU5QwvhFrUhvKFFcxyrpgUVPEhuenvboL_2mHc6nUTLbat6dDvomayVDIdAJrQUY_a4GMM6PQmNGsT9pqCPgSm-8D0MbBkuO0Naa5Xfhe69Ml_8A9oRmxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679699801</pqid></control><display><type>article</type><title>3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration</title><source>American Chemical Society Journals</source><creator>Wang, Yihan ; Xie, Changnan ; Zhang, Zhiming ; Liu, Haining ; Xu, Haixia ; Peng, Ziyue ; Liu, Chun ; Li, Jianjun ; Wang, Chengqiang ; Xu, Tao ; Zhu, Lixin</creator><creatorcontrib>Wang, Yihan ; Xie, Changnan ; Zhang, Zhiming ; Liu, Haining ; Xu, Haixia ; Peng, Ziyue ; Liu, Chun ; Li, Jianjun ; Wang, Chengqiang ; Xu, Tao ; Zhu, Lixin</creatorcontrib><description>The repair of large bone defects remains a challenging problem in bone tissue engineering. Ischemia and hypoxia in the bone defect area make it difficult for seed cells to survive and differentiate, which fail to perform effective tissue regeneration. Current oxygen-producing materials frequently encounter problems such as a rapid degradation rate, insufficient mechanical properties, difficult molding, and cumbersome fabrication. Here, a novel three-dimensional (3D) printed integrated bionic oxygenated scaffold was fabricated with gelatin-CaO2 microspheres, polycaprolactone (PCL), and nanohydroxyapatite (nHA) using low-temperature molding 3D printing technology. The scaffold had outstanding mechanical properties with bionic hierarchical porous structures. In vitro reports showed that the scaffold exhibited excellent cytocompatibility and could release O2 sustainably for more than 2 weeks, which significantly enhanced the survival, growth, and osteogenic differentiation of bone marrow mesenchymal stem cells under hypoxia. In vivo experiments revealed that the scaffold facilitated efficient bone repair after it was transplanted into a rabbit calvarial defect model. This result may be due to the scaffolds reducing hypoxia-inducible factor-1α accumulation, improving the expression of osteogenic regulatory transcription factors, and accelerating osteogenesis. In summary, the integrated bionic PCL/nHA/CaO2 scaffold had excellent capabilities in sustainable O2 release and bone regeneration, which provided a promising clinical strategy for bone defect repair.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c04378</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Biological and Medical Applications of Materials and Interfaces</subject><ispartof>ACS applied materials & interfaces, 2022-07, Vol.14 (26), p.29506-29520</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-8d60a05cf9e39746e232f44ac66e00f0b24fe998fa3549bda13bc42c339264193</citedby><cites>FETCH-LOGICAL-a307t-8d60a05cf9e39746e232f44ac66e00f0b24fe998fa3549bda13bc42c339264193</cites><orcidid>0000-0002-5783-6859 ; 0000-0001-5181-6702 ; 0000-0003-3055-3063 ; 0000-0002-3870-0024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c04378$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c04378$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Wang, Yihan</creatorcontrib><creatorcontrib>Xie, Changnan</creatorcontrib><creatorcontrib>Zhang, Zhiming</creatorcontrib><creatorcontrib>Liu, Haining</creatorcontrib><creatorcontrib>Xu, Haixia</creatorcontrib><creatorcontrib>Peng, Ziyue</creatorcontrib><creatorcontrib>Liu, Chun</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Wang, Chengqiang</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Zhu, Lixin</creatorcontrib><title>3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The repair of large bone defects remains a challenging problem in bone tissue engineering. Ischemia and hypoxia in the bone defect area make it difficult for seed cells to survive and differentiate, which fail to perform effective tissue regeneration. Current oxygen-producing materials frequently encounter problems such as a rapid degradation rate, insufficient mechanical properties, difficult molding, and cumbersome fabrication. Here, a novel three-dimensional (3D) printed integrated bionic oxygenated scaffold was fabricated with gelatin-CaO2 microspheres, polycaprolactone (PCL), and nanohydroxyapatite (nHA) using low-temperature molding 3D printing technology. The scaffold had outstanding mechanical properties with bionic hierarchical porous structures. In vitro reports showed that the scaffold exhibited excellent cytocompatibility and could release O2 sustainably for more than 2 weeks, which significantly enhanced the survival, growth, and osteogenic differentiation of bone marrow mesenchymal stem cells under hypoxia. In vivo experiments revealed that the scaffold facilitated efficient bone repair after it was transplanted into a rabbit calvarial defect model. This result may be due to the scaffolds reducing hypoxia-inducible factor-1α accumulation, improving the expression of osteogenic regulatory transcription factors, and accelerating osteogenesis. In summary, the integrated bionic PCL/nHA/CaO2 scaffold had excellent capabilities in sustainable O2 release and bone regeneration, which provided a promising clinical strategy for bone defect repair.</description><subject>Biological and Medical Applications of Materials and Interfaces</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKtXz3sUYevkY7Obo1WrhULFj3NIs5OyZbupSQv2vzd1izcvM4-Z3xuYR8g1hREFRu-MjWbdjJgFwcvqhAyoEiKvWMFO_7QQ5-QixhWA5AyKAZnwx-w1NN0W62ya6jKYgxw3vmtsNv_eL7H7nbxb45xv68z5kI19h9kbph0mPrGX5MyZNuLVsQ_J5-Tp4-Eln82fpw_3s9xwKLd5VUswUFinkKtSSGScOSGMlRIBHCyYcKhU5QwvhFrUhvKFFcxyrpgUVPEhuenvboL_2mHc6nUTLbat6dDvomayVDIdAJrQUY_a4GMM6PQmNGsT9pqCPgSm-8D0MbBkuO0Naa5Xfhe69Ml_8A9oRmxo</recordid><startdate>20220706</startdate><enddate>20220706</enddate><creator>Wang, Yihan</creator><creator>Xie, Changnan</creator><creator>Zhang, Zhiming</creator><creator>Liu, Haining</creator><creator>Xu, Haixia</creator><creator>Peng, Ziyue</creator><creator>Liu, Chun</creator><creator>Li, Jianjun</creator><creator>Wang, Chengqiang</creator><creator>Xu, Tao</creator><creator>Zhu, Lixin</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5783-6859</orcidid><orcidid>https://orcid.org/0000-0001-5181-6702</orcidid><orcidid>https://orcid.org/0000-0003-3055-3063</orcidid><orcidid>https://orcid.org/0000-0002-3870-0024</orcidid></search><sort><creationdate>20220706</creationdate><title>3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration</title><author>Wang, Yihan ; Xie, Changnan ; Zhang, Zhiming ; Liu, Haining ; Xu, Haixia ; Peng, Ziyue ; Liu, Chun ; Li, Jianjun ; Wang, Chengqiang ; Xu, Tao ; Zhu, Lixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-8d60a05cf9e39746e232f44ac66e00f0b24fe998fa3549bda13bc42c339264193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological and Medical Applications of Materials and Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yihan</creatorcontrib><creatorcontrib>Xie, Changnan</creatorcontrib><creatorcontrib>Zhang, Zhiming</creatorcontrib><creatorcontrib>Liu, Haining</creatorcontrib><creatorcontrib>Xu, Haixia</creatorcontrib><creatorcontrib>Peng, Ziyue</creatorcontrib><creatorcontrib>Liu, Chun</creatorcontrib><creatorcontrib>Li, Jianjun</creatorcontrib><creatorcontrib>Wang, Chengqiang</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Zhu, Lixin</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yihan</au><au>Xie, Changnan</au><au>Zhang, Zhiming</au><au>Liu, Haining</au><au>Xu, Haixia</au><au>Peng, Ziyue</au><au>Liu, Chun</au><au>Li, Jianjun</au><au>Wang, Chengqiang</au><au>Xu, Tao</au><au>Zhu, Lixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-07-06</date><risdate>2022</risdate><volume>14</volume><issue>26</issue><spage>29506</spage><epage>29520</epage><pages>29506-29520</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The repair of large bone defects remains a challenging problem in bone tissue engineering. Ischemia and hypoxia in the bone defect area make it difficult for seed cells to survive and differentiate, which fail to perform effective tissue regeneration. Current oxygen-producing materials frequently encounter problems such as a rapid degradation rate, insufficient mechanical properties, difficult molding, and cumbersome fabrication. Here, a novel three-dimensional (3D) printed integrated bionic oxygenated scaffold was fabricated with gelatin-CaO2 microspheres, polycaprolactone (PCL), and nanohydroxyapatite (nHA) using low-temperature molding 3D printing technology. The scaffold had outstanding mechanical properties with bionic hierarchical porous structures. In vitro reports showed that the scaffold exhibited excellent cytocompatibility and could release O2 sustainably for more than 2 weeks, which significantly enhanced the survival, growth, and osteogenic differentiation of bone marrow mesenchymal stem cells under hypoxia. In vivo experiments revealed that the scaffold facilitated efficient bone repair after it was transplanted into a rabbit calvarial defect model. This result may be due to the scaffolds reducing hypoxia-inducible factor-1α accumulation, improving the expression of osteogenic regulatory transcription factors, and accelerating osteogenesis. In summary, the integrated bionic PCL/nHA/CaO2 scaffold had excellent capabilities in sustainable O2 release and bone regeneration, which provided a promising clinical strategy for bone defect repair.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c04378</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5783-6859</orcidid><orcidid>https://orcid.org/0000-0001-5181-6702</orcidid><orcidid>https://orcid.org/0000-0003-3055-3063</orcidid><orcidid>https://orcid.org/0000-0002-3870-0024</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-07, Vol.14 (26), p.29506-29520 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2679699801 |
source | American Chemical Society Journals |
subjects | Biological and Medical Applications of Materials and Interfaces |
title | 3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A37%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printed%20Integrated%20Bionic%20Oxygenated%20Scaffold%20for%20Bone%20Regeneration&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wang,%20Yihan&rft.date=2022-07-06&rft.volume=14&rft.issue=26&rft.spage=29506&rft.epage=29520&rft.pages=29506-29520&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c04378&rft_dat=%3Cproquest_cross%3E2679699801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679699801&rft_id=info:pmid/&rfr_iscdi=true |