Poly(arylene piperidine) Quaternary Ammonium Salts Promoting Stable Long‐Lived Room‐Temperature Phosphorescence in Aqueous Environment

Room‐temperature phosphorescence (RTP) materials have garnered considerable research attention owing to their excellent luminescence properties and potential application prospects in anti‐counterfeiting, information storage, and optoelectronics. However, several RTP systems are extremely sensitive t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-08, Vol.34 (34), p.e2204415-n/a
Hauptverfasser: Wang, Chang, Qu, Lunjun, Chen, Xiaohong, Zhou, Qian, Yang, Yan, Zheng, Yan, Zheng, Xian, Gao, Liang, Hao, Jinqiu, Zhu, Lingyun, Pi, Bingxue, Yang, Chaolong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 34
container_start_page e2204415
container_title Advanced materials (Weinheim)
container_volume 34
creator Wang, Chang
Qu, Lunjun
Chen, Xiaohong
Zhou, Qian
Yang, Yan
Zheng, Yan
Zheng, Xian
Gao, Liang
Hao, Jinqiu
Zhu, Lingyun
Pi, Bingxue
Yang, Chaolong
description Room‐temperature phosphorescence (RTP) materials have garnered considerable research attention owing to their excellent luminescence properties and potential application prospects in anti‐counterfeiting, information storage, and optoelectronics. However, several RTP systems are extremely sensitive to humidity, and consequently, the realization of long‐lived RTP in water remains a formidable challenge. Herein, a feasible and effective strategy is presented to achieve long‐lived polymeric RTP systems, even in an aqueous environment, through doping of synthesized polymeric phosphor PBHDB into a poly(methyl methacrylate) (PMMA) matrix. Compared to the precursor polymer PBN and organic molecule HDBP, a more rigid polymer microenvironment and electrostatic interaction are formed between the PMMA matrix and polymer PBHDB, which effectively reduce the nonradiative decay rate of triplet excitons and dramatically increase the phosphorescence intensity. Specifically, the phosphorescence lifetime of the PBHDB@PMMA film (1258.62 ms) is much longer than those of PBN@PMMA (674.20 ms) and HDBP@PMMA (1.06 ms). Most importantly, a bright‐green afterglow can be observed after soaking the PBHDB@PMMA film in water for more than a month. The excellent water resistance and reversible response properties endow these systems with promising potential for dynamic information encryption even in water. A long‐lived polymeric room‐temperature phosphorescence (RTP) system is developed based on the electrostatic interaction acting between a poly(methyl methacrylate) (PMMA) matrix and a polymer phosphor. The quaternization of the polymeric phosphors significantly enhances the RTP performance, and a bright‐green phosphorescence with a lifetime of 960 ms can be observed even after soaking in water for a month.
doi_str_mv 10.1002/adma.202204415
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2679698527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679698527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3505-8434f323dd4c7dac80970bfd843c298120726a861245fbabce35d9a8bdab66273</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EEkNhy9pSN2WRwXFiJ15GfYE0iOmDdeTEN60rP1I7aTW7rlnxG_klOAwqEhtWV77-ztHRPQi9z8k6J4R-lMrKNSWUkrLM2Qu0yhnNs5II9hKtiChYJnhZv0ZvYrwjhAhO-Ap933qzO5JhZ8ABHvUIQSvt4AO-mOUEwaUv3FjrnZ4tvpJmingbvPWTdjf4apKdAbzx7ubn04-NfgCFL7236XENNnnJaQ6At7c-jrc-QOzB9YC1w839DH6O-NQ96OCdBTe9Ra8GaSK8-zMP0Lez0-vjT9nm6_nn42aT9QUjLKvLohwKWihV9pWSfU1ERbpBpX1PRZ1TUlEua57Tkg2d7HoomBKy7pTsOKdVcYCO9r5j8ClFnFqrUzBjpFsitZRXgoua_UYP_0Hv_JxuYhJVESYWv4Va76k--BgDDO0YtE2Ha3PSLtW0SzXtczVJIPaCR21g9x-6bU6-NH-1vwDJqZba</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2705966277</pqid></control><display><type>article</type><title>Poly(arylene piperidine) Quaternary Ammonium Salts Promoting Stable Long‐Lived Room‐Temperature Phosphorescence in Aqueous Environment</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Chang ; Qu, Lunjun ; Chen, Xiaohong ; Zhou, Qian ; Yang, Yan ; Zheng, Yan ; Zheng, Xian ; Gao, Liang ; Hao, Jinqiu ; Zhu, Lingyun ; Pi, Bingxue ; Yang, Chaolong</creator><creatorcontrib>Wang, Chang ; Qu, Lunjun ; Chen, Xiaohong ; Zhou, Qian ; Yang, Yan ; Zheng, Yan ; Zheng, Xian ; Gao, Liang ; Hao, Jinqiu ; Zhu, Lingyun ; Pi, Bingxue ; Yang, Chaolong</creatorcontrib><description>Room‐temperature phosphorescence (RTP) materials have garnered considerable research attention owing to their excellent luminescence properties and potential application prospects in anti‐counterfeiting, information storage, and optoelectronics. However, several RTP systems are extremely sensitive to humidity, and consequently, the realization of long‐lived RTP in water remains a formidable challenge. Herein, a feasible and effective strategy is presented to achieve long‐lived polymeric RTP systems, even in an aqueous environment, through doping of synthesized polymeric phosphor PBHDB into a poly(methyl methacrylate) (PMMA) matrix. Compared to the precursor polymer PBN and organic molecule HDBP, a more rigid polymer microenvironment and electrostatic interaction are formed between the PMMA matrix and polymer PBHDB, which effectively reduce the nonradiative decay rate of triplet excitons and dramatically increase the phosphorescence intensity. Specifically, the phosphorescence lifetime of the PBHDB@PMMA film (1258.62 ms) is much longer than those of PBN@PMMA (674.20 ms) and HDBP@PMMA (1.06 ms). Most importantly, a bright‐green afterglow can be observed after soaking the PBHDB@PMMA film in water for more than a month. The excellent water resistance and reversible response properties endow these systems with promising potential for dynamic information encryption even in water. A long‐lived polymeric room‐temperature phosphorescence (RTP) system is developed based on the electrostatic interaction acting between a poly(methyl methacrylate) (PMMA) matrix and a polymer phosphor. The quaternization of the polymeric phosphors significantly enhances the RTP performance, and a bright‐green phosphorescence with a lifetime of 960 ms can be observed even after soaking in water for a month.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202204415</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Afterglows ; aqueous environment ; Aqueous environments ; Decay rate ; dynamic anti‐counterfeiting ; electrostatic interactions ; Excitons ; Information storage ; long‐lived room temperature phosphorescence ; Luminescence ; Materials science ; Optical properties ; Optoelectronics ; Organic chemistry ; Phosphorescence ; Phosphors ; Piperidine ; Polymers ; Polymethyl methacrylate ; Prepolymers ; Quaternary ammonium salts ; quaternary ammonium salts ; System effectiveness ; Water resistance</subject><ispartof>Advanced materials (Weinheim), 2022-08, Vol.34 (34), p.e2204415-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3505-8434f323dd4c7dac80970bfd843c298120726a861245fbabce35d9a8bdab66273</citedby><cites>FETCH-LOGICAL-c3505-8434f323dd4c7dac80970bfd843c298120726a861245fbabce35d9a8bdab66273</cites><orcidid>0000-0003-3535-7918</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202204415$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202204415$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Chang</creatorcontrib><creatorcontrib>Qu, Lunjun</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><creatorcontrib>Zhou, Qian</creatorcontrib><creatorcontrib>Yang, Yan</creatorcontrib><creatorcontrib>Zheng, Yan</creatorcontrib><creatorcontrib>Zheng, Xian</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Hao, Jinqiu</creatorcontrib><creatorcontrib>Zhu, Lingyun</creatorcontrib><creatorcontrib>Pi, Bingxue</creatorcontrib><creatorcontrib>Yang, Chaolong</creatorcontrib><title>Poly(arylene piperidine) Quaternary Ammonium Salts Promoting Stable Long‐Lived Room‐Temperature Phosphorescence in Aqueous Environment</title><title>Advanced materials (Weinheim)</title><description>Room‐temperature phosphorescence (RTP) materials have garnered considerable research attention owing to their excellent luminescence properties and potential application prospects in anti‐counterfeiting, information storage, and optoelectronics. However, several RTP systems are extremely sensitive to humidity, and consequently, the realization of long‐lived RTP in water remains a formidable challenge. Herein, a feasible and effective strategy is presented to achieve long‐lived polymeric RTP systems, even in an aqueous environment, through doping of synthesized polymeric phosphor PBHDB into a poly(methyl methacrylate) (PMMA) matrix. Compared to the precursor polymer PBN and organic molecule HDBP, a more rigid polymer microenvironment and electrostatic interaction are formed between the PMMA matrix and polymer PBHDB, which effectively reduce the nonradiative decay rate of triplet excitons and dramatically increase the phosphorescence intensity. Specifically, the phosphorescence lifetime of the PBHDB@PMMA film (1258.62 ms) is much longer than those of PBN@PMMA (674.20 ms) and HDBP@PMMA (1.06 ms). Most importantly, a bright‐green afterglow can be observed after soaking the PBHDB@PMMA film in water for more than a month. The excellent water resistance and reversible response properties endow these systems with promising potential for dynamic information encryption even in water. A long‐lived polymeric room‐temperature phosphorescence (RTP) system is developed based on the electrostatic interaction acting between a poly(methyl methacrylate) (PMMA) matrix and a polymer phosphor. The quaternization of the polymeric phosphors significantly enhances the RTP performance, and a bright‐green phosphorescence with a lifetime of 960 ms can be observed even after soaking in water for a month.</description><subject>Afterglows</subject><subject>aqueous environment</subject><subject>Aqueous environments</subject><subject>Decay rate</subject><subject>dynamic anti‐counterfeiting</subject><subject>electrostatic interactions</subject><subject>Excitons</subject><subject>Information storage</subject><subject>long‐lived room temperature phosphorescence</subject><subject>Luminescence</subject><subject>Materials science</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Organic chemistry</subject><subject>Phosphorescence</subject><subject>Phosphors</subject><subject>Piperidine</subject><subject>Polymers</subject><subject>Polymethyl methacrylate</subject><subject>Prepolymers</subject><subject>Quaternary ammonium salts</subject><subject>quaternary ammonium salts</subject><subject>System effectiveness</subject><subject>Water resistance</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUhS0EEkNhy9pSN2WRwXFiJ15GfYE0iOmDdeTEN60rP1I7aTW7rlnxG_klOAwqEhtWV77-ztHRPQi9z8k6J4R-lMrKNSWUkrLM2Qu0yhnNs5II9hKtiChYJnhZv0ZvYrwjhAhO-Ap933qzO5JhZ8ABHvUIQSvt4AO-mOUEwaUv3FjrnZ4tvpJmingbvPWTdjf4apKdAbzx7ubn04-NfgCFL7236XENNnnJaQ6At7c-jrc-QOzB9YC1w839DH6O-NQ96OCdBTe9Ra8GaSK8-zMP0Lez0-vjT9nm6_nn42aT9QUjLKvLohwKWihV9pWSfU1ERbpBpX1PRZ1TUlEua57Tkg2d7HoomBKy7pTsOKdVcYCO9r5j8ClFnFqrUzBjpFsitZRXgoua_UYP_0Hv_JxuYhJVESYWv4Va76k--BgDDO0YtE2Ha3PSLtW0SzXtczVJIPaCR21g9x-6bU6-NH-1vwDJqZba</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Wang, Chang</creator><creator>Qu, Lunjun</creator><creator>Chen, Xiaohong</creator><creator>Zhou, Qian</creator><creator>Yang, Yan</creator><creator>Zheng, Yan</creator><creator>Zheng, Xian</creator><creator>Gao, Liang</creator><creator>Hao, Jinqiu</creator><creator>Zhu, Lingyun</creator><creator>Pi, Bingxue</creator><creator>Yang, Chaolong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3535-7918</orcidid></search><sort><creationdate>20220801</creationdate><title>Poly(arylene piperidine) Quaternary Ammonium Salts Promoting Stable Long‐Lived Room‐Temperature Phosphorescence in Aqueous Environment</title><author>Wang, Chang ; Qu, Lunjun ; Chen, Xiaohong ; Zhou, Qian ; Yang, Yan ; Zheng, Yan ; Zheng, Xian ; Gao, Liang ; Hao, Jinqiu ; Zhu, Lingyun ; Pi, Bingxue ; Yang, Chaolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3505-8434f323dd4c7dac80970bfd843c298120726a861245fbabce35d9a8bdab66273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Afterglows</topic><topic>aqueous environment</topic><topic>Aqueous environments</topic><topic>Decay rate</topic><topic>dynamic anti‐counterfeiting</topic><topic>electrostatic interactions</topic><topic>Excitons</topic><topic>Information storage</topic><topic>long‐lived room temperature phosphorescence</topic><topic>Luminescence</topic><topic>Materials science</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Organic chemistry</topic><topic>Phosphorescence</topic><topic>Phosphors</topic><topic>Piperidine</topic><topic>Polymers</topic><topic>Polymethyl methacrylate</topic><topic>Prepolymers</topic><topic>Quaternary ammonium salts</topic><topic>quaternary ammonium salts</topic><topic>System effectiveness</topic><topic>Water resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chang</creatorcontrib><creatorcontrib>Qu, Lunjun</creatorcontrib><creatorcontrib>Chen, Xiaohong</creatorcontrib><creatorcontrib>Zhou, Qian</creatorcontrib><creatorcontrib>Yang, Yan</creatorcontrib><creatorcontrib>Zheng, Yan</creatorcontrib><creatorcontrib>Zheng, Xian</creatorcontrib><creatorcontrib>Gao, Liang</creatorcontrib><creatorcontrib>Hao, Jinqiu</creatorcontrib><creatorcontrib>Zhu, Lingyun</creatorcontrib><creatorcontrib>Pi, Bingxue</creatorcontrib><creatorcontrib>Yang, Chaolong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chang</au><au>Qu, Lunjun</au><au>Chen, Xiaohong</au><au>Zhou, Qian</au><au>Yang, Yan</au><au>Zheng, Yan</au><au>Zheng, Xian</au><au>Gao, Liang</au><au>Hao, Jinqiu</au><au>Zhu, Lingyun</au><au>Pi, Bingxue</au><au>Yang, Chaolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(arylene piperidine) Quaternary Ammonium Salts Promoting Stable Long‐Lived Room‐Temperature Phosphorescence in Aqueous Environment</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>34</volume><issue>34</issue><spage>e2204415</spage><epage>n/a</epage><pages>e2204415-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Room‐temperature phosphorescence (RTP) materials have garnered considerable research attention owing to their excellent luminescence properties and potential application prospects in anti‐counterfeiting, information storage, and optoelectronics. However, several RTP systems are extremely sensitive to humidity, and consequently, the realization of long‐lived RTP in water remains a formidable challenge. Herein, a feasible and effective strategy is presented to achieve long‐lived polymeric RTP systems, even in an aqueous environment, through doping of synthesized polymeric phosphor PBHDB into a poly(methyl methacrylate) (PMMA) matrix. Compared to the precursor polymer PBN and organic molecule HDBP, a more rigid polymer microenvironment and electrostatic interaction are formed between the PMMA matrix and polymer PBHDB, which effectively reduce the nonradiative decay rate of triplet excitons and dramatically increase the phosphorescence intensity. Specifically, the phosphorescence lifetime of the PBHDB@PMMA film (1258.62 ms) is much longer than those of PBN@PMMA (674.20 ms) and HDBP@PMMA (1.06 ms). Most importantly, a bright‐green afterglow can be observed after soaking the PBHDB@PMMA film in water for more than a month. The excellent water resistance and reversible response properties endow these systems with promising potential for dynamic information encryption even in water. A long‐lived polymeric room‐temperature phosphorescence (RTP) system is developed based on the electrostatic interaction acting between a poly(methyl methacrylate) (PMMA) matrix and a polymer phosphor. The quaternization of the polymeric phosphors significantly enhances the RTP performance, and a bright‐green phosphorescence with a lifetime of 960 ms can be observed even after soaking in water for a month.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202204415</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3535-7918</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-08, Vol.34 (34), p.e2204415-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2679698527
source Wiley Online Library Journals Frontfile Complete
subjects Afterglows
aqueous environment
Aqueous environments
Decay rate
dynamic anti‐counterfeiting
electrostatic interactions
Excitons
Information storage
long‐lived room temperature phosphorescence
Luminescence
Materials science
Optical properties
Optoelectronics
Organic chemistry
Phosphorescence
Phosphors
Piperidine
Polymers
Polymethyl methacrylate
Prepolymers
Quaternary ammonium salts
quaternary ammonium salts
System effectiveness
Water resistance
title Poly(arylene piperidine) Quaternary Ammonium Salts Promoting Stable Long‐Lived Room‐Temperature Phosphorescence in Aqueous Environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(arylene%20piperidine)%20Quaternary%20Ammonium%20Salts%20Promoting%20Stable%20Long%E2%80%90Lived%20Room%E2%80%90Temperature%20Phosphorescence%20in%20Aqueous%20Environment&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Chang&rft.date=2022-08-01&rft.volume=34&rft.issue=34&rft.spage=e2204415&rft.epage=n/a&rft.pages=e2204415-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202204415&rft_dat=%3Cproquest_cross%3E2679698527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2705966277&rft_id=info:pmid/&rfr_iscdi=true