Structuring diagnostic knowledge for large-scale process systems

A set of guidelines is described for generating an initial organization of knowledge for distributed diagnosis of a process plant. The diagnostic knowledge is organized hierarchically by primary processing systems (commonly feed, reaction, and separation in chemical plants), subsystems, components,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 1998-11, Vol.22 (12), p.1897-1905
Hauptverfasser: Prasad, P.R., Davis, J.F., Jirapinyo, Y., Josephson, John R., Bhalodia, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1905
container_issue 12
container_start_page 1897
container_title Computers & chemical engineering
container_volume 22
creator Prasad, P.R.
Davis, J.F.
Jirapinyo, Y.
Josephson, John R.
Bhalodia, M.
description A set of guidelines is described for generating an initial organization of knowledge for distributed diagnosis of a process plant. The diagnostic knowledge is organized hierarchically by primary processing systems (commonly feed, reaction, and separation in chemical plants), subsystems, components, behaviors and malfunction modes. The resulting classification hierarchy decomposes the diagnostic problem solving into coordinated, distributed modules, where different modules may use different methods to address specific local subproblems. Classification hierarchies, organized in this way, provide effective modularity for organizing large-scale, knowledge-based diagnostic systems, which are difficult to construct without pertinent organizing principles. Such hierarchies provide a framework for systematic knowledge acquisition and maintenance. Application of the guidelines emphasizes readily available sources of knowledge, considers common design and operating objectives of process plants, draws upon operating expertise and builds on generic process characteristics. Application is illustrated for a fluidized catalytic cracking unit and a paraxylene production unit.
doi_str_mv 10.1016/S0098-1354(98)00227-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26795327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135498002270</els_id><sourcerecordid>26795327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-9909d1ecd8d461f960052ddc7d3f1a92ed13411ab45a59c3dae0822aa9f556193</originalsourceid><addsrcrecordid>eNqFkE1LxDAYhIMouK7-BKEHET1U89G0yUll8QsWPKyeQ0zelmi3XfO2yv57213Ro6e5PDPDDCHHjF4wyvLLBaVapUzI7Eyrc0o5L1K6QyZMFSLNRCF3yeQX2ScHiG90oDKlJuR60cXedX0MTZX4YKumxS645L1pv2rwFSRlG5PaxgpSdLaGZBVbB4gJrrGDJR6SvdLWCEc_OiUvd7fPs4d0_nT_OLuZpy6jWZdqTbVn4LzyWc5KnVMqufeu8KJkVnPwTGSM2ddMWqmd8Bao4txaXUqZMy2m5HSbO_R_9ICdWQZ0UNe2gbZHw_NCS8GLAZRb0MUWMUJpVjEsbVwbRs34l9n8ZcYzzKCbvwwdfCc_BXYcWkbbuIB_5lxQJcf4qy0Gw9jPANGgC9A48CGC64xvwz9F32Opf0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26795327</pqid></control><display><type>article</type><title>Structuring diagnostic knowledge for large-scale process systems</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Prasad, P.R. ; Davis, J.F. ; Jirapinyo, Y. ; Josephson, John R. ; Bhalodia, M.</creator><creatorcontrib>Prasad, P.R. ; Davis, J.F. ; Jirapinyo, Y. ; Josephson, John R. ; Bhalodia, M.</creatorcontrib><description>A set of guidelines is described for generating an initial organization of knowledge for distributed diagnosis of a process plant. The diagnostic knowledge is organized hierarchically by primary processing systems (commonly feed, reaction, and separation in chemical plants), subsystems, components, behaviors and malfunction modes. The resulting classification hierarchy decomposes the diagnostic problem solving into coordinated, distributed modules, where different modules may use different methods to address specific local subproblems. Classification hierarchies, organized in this way, provide effective modularity for organizing large-scale, knowledge-based diagnostic systems, which are difficult to construct without pertinent organizing principles. Such hierarchies provide a framework for systematic knowledge acquisition and maintenance. Application of the guidelines emphasizes readily available sources of knowledge, considers common design and operating objectives of process plants, draws upon operating expertise and builds on generic process characteristics. Application is illustrated for a fluidized catalytic cracking unit and a paraxylene production unit.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/S0098-1354(98)00227-0</identifier><identifier>CODEN: CCENDW</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization ; Applied sciences ; Chemical engineering ; Exact sciences and technology ; knowledge representation ; knowledge-based systems ; process diagnosis</subject><ispartof>Computers &amp; chemical engineering, 1998-11, Vol.22 (12), p.1897-1905</ispartof><rights>1998 Elsevier Science Ltd</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-9909d1ecd8d461f960052ddc7d3f1a92ed13411ab45a59c3dae0822aa9f556193</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0098-1354(98)00227-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1630857$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Prasad, P.R.</creatorcontrib><creatorcontrib>Davis, J.F.</creatorcontrib><creatorcontrib>Jirapinyo, Y.</creatorcontrib><creatorcontrib>Josephson, John R.</creatorcontrib><creatorcontrib>Bhalodia, M.</creatorcontrib><title>Structuring diagnostic knowledge for large-scale process systems</title><title>Computers &amp; chemical engineering</title><description>A set of guidelines is described for generating an initial organization of knowledge for distributed diagnosis of a process plant. The diagnostic knowledge is organized hierarchically by primary processing systems (commonly feed, reaction, and separation in chemical plants), subsystems, components, behaviors and malfunction modes. The resulting classification hierarchy decomposes the diagnostic problem solving into coordinated, distributed modules, where different modules may use different methods to address specific local subproblems. Classification hierarchies, organized in this way, provide effective modularity for organizing large-scale, knowledge-based diagnostic systems, which are difficult to construct without pertinent organizing principles. Such hierarchies provide a framework for systematic knowledge acquisition and maintenance. Application of the guidelines emphasizes readily available sources of knowledge, considers common design and operating objectives of process plants, draws upon operating expertise and builds on generic process characteristics. Application is illustrated for a fluidized catalytic cracking unit and a paraxylene production unit.</description><subject>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>knowledge representation</subject><subject>knowledge-based systems</subject><subject>process diagnosis</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAYhIMouK7-BKEHET1U89G0yUll8QsWPKyeQ0zelmi3XfO2yv57213Ro6e5PDPDDCHHjF4wyvLLBaVapUzI7Eyrc0o5L1K6QyZMFSLNRCF3yeQX2ScHiG90oDKlJuR60cXedX0MTZX4YKumxS645L1pv2rwFSRlG5PaxgpSdLaGZBVbB4gJrrGDJR6SvdLWCEc_OiUvd7fPs4d0_nT_OLuZpy6jWZdqTbVn4LzyWc5KnVMqufeu8KJkVnPwTGSM2ddMWqmd8Bao4txaXUqZMy2m5HSbO_R_9ICdWQZ0UNe2gbZHw_NCS8GLAZRb0MUWMUJpVjEsbVwbRs34l9n8ZcYzzKCbvwwdfCc_BXYcWkbbuIB_5lxQJcf4qy0Gw9jPANGgC9A48CGC64xvwz9F32Opf0c</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>Prasad, P.R.</creator><creator>Davis, J.F.</creator><creator>Jirapinyo, Y.</creator><creator>Josephson, John R.</creator><creator>Bhalodia, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19981101</creationdate><title>Structuring diagnostic knowledge for large-scale process systems</title><author>Prasad, P.R. ; Davis, J.F. ; Jirapinyo, Y. ; Josephson, John R. ; Bhalodia, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-9909d1ecd8d461f960052ddc7d3f1a92ed13411ab45a59c3dae0822aa9f556193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>knowledge representation</topic><topic>knowledge-based systems</topic><topic>process diagnosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasad, P.R.</creatorcontrib><creatorcontrib>Davis, J.F.</creatorcontrib><creatorcontrib>Jirapinyo, Y.</creatorcontrib><creatorcontrib>Josephson, John R.</creatorcontrib><creatorcontrib>Bhalodia, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasad, P.R.</au><au>Davis, J.F.</au><au>Jirapinyo, Y.</au><au>Josephson, John R.</au><au>Bhalodia, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structuring diagnostic knowledge for large-scale process systems</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>1998-11-01</date><risdate>1998</risdate><volume>22</volume><issue>12</issue><spage>1897</spage><epage>1905</epage><pages>1897-1905</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><coden>CCENDW</coden><abstract>A set of guidelines is described for generating an initial organization of knowledge for distributed diagnosis of a process plant. The diagnostic knowledge is organized hierarchically by primary processing systems (commonly feed, reaction, and separation in chemical plants), subsystems, components, behaviors and malfunction modes. The resulting classification hierarchy decomposes the diagnostic problem solving into coordinated, distributed modules, where different modules may use different methods to address specific local subproblems. Classification hierarchies, organized in this way, provide effective modularity for organizing large-scale, knowledge-based diagnostic systems, which are difficult to construct without pertinent organizing principles. Such hierarchies provide a framework for systematic knowledge acquisition and maintenance. Application of the guidelines emphasizes readily available sources of knowledge, considers common design and operating objectives of process plants, draws upon operating expertise and builds on generic process characteristics. Application is illustrated for a fluidized catalytic cracking unit and a paraxylene production unit.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0098-1354(98)00227-0</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 1998-11, Vol.22 (12), p.1897-1905
issn 0098-1354
1873-4375
language eng
recordid cdi_proquest_miscellaneous_26795327
source ScienceDirect Freedom Collection (Elsevier)
subjects Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization
Applied sciences
Chemical engineering
Exact sciences and technology
knowledge representation
knowledge-based systems
process diagnosis
title Structuring diagnostic knowledge for large-scale process systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structuring%20diagnostic%20knowledge%20for%20large-scale%20process%20systems&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Prasad,%20P.R.&rft.date=1998-11-01&rft.volume=22&rft.issue=12&rft.spage=1897&rft.epage=1905&rft.pages=1897-1905&rft.issn=0098-1354&rft.eissn=1873-4375&rft.coden=CCENDW&rft_id=info:doi/10.1016/S0098-1354(98)00227-0&rft_dat=%3Cproquest_cross%3E26795327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26795327&rft_id=info:pmid/&rft_els_id=S0098135498002270&rfr_iscdi=true