Heterostructured ZnCo2O4–CoOOH nanosheets on Ni foam for a high performance bifunctional alkaline water splitting catalyst
It is of utmost importance to explore bifunctional electrocatalysts for water splitting. Herein, unique ZnCo2O4–CoOOH heterostructured ultrathin nanosheets on Ni foam are reported that combines a two-step hydrothermal method. This catalyst exhibits excellent catalytic performances to achieve a curre...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2022-07, Vol.51 (26), p.10061-10068 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10068 |
---|---|
container_issue | 26 |
container_start_page | 10061 |
container_title | Dalton transactions : an international journal of inorganic chemistry |
container_volume | 51 |
creator | Wang, Congli Jiu, Hongfang Zhang, Lixin Song, Wei Zhang, Yufang Hao, Wei Xu, Qianwen Qin, Yaqi Che, Sicong Guo, Zhixin |
description | It is of utmost importance to explore bifunctional electrocatalysts for water splitting. Herein, unique ZnCo2O4–CoOOH heterostructured ultrathin nanosheets on Ni foam are reported that combines a two-step hydrothermal method. This catalyst exhibits excellent catalytic performances to achieve a current density of 10 mA cm−2 with an ultralow overpotential of 115 mV for HER, attaining an overpotential of 238 mV at 20 mA cm−2 for OER. Remarkably, ZnCo2O4–CoOOH/Ni shows a voltage of 1.494 V to drive a current density of 10 mA cm−2. Such performances are due to the inter-penetrative pores present in the ultrathin nanosheets that provide large surface areas and expose massive active sites to enhance activities. In addition, the unique nanosheet structure and the 3D Ni foam substrate possess large specific surface areas, which can facilitate mass diffusion. This excellent performance is ascribed to the ZnCo2O4–CoOOH heterostructure that manipulates strong synergy to improve the electrochemical activity. This study offers new insight on an innovative approach for the exploitation of effective bifunctional electrocatalysts with a heterostructure. |
doi_str_mv | 10.1039/d2dt00641c |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2679239695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684589562</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-41c818fbe0eb4bac80274a3f36b3e78414ba56c77c64046ea31474bc428a18593</originalsourceid><addsrcrecordid>eNpdkL1KBDEQgIMoeJ42PkHAxuY0f5vNlrKoJ4jbaGNzZHOzdzlzybrJIoKF7-Ab-iRGFAub-eNjhm8QOqbkjBJenS_ZMhEiBTU7aEJFWc4qxsXuX83kPjqIcUMIY6RgE_Q2hwRDiGkYTRoHWOJHXwfWiM_3jzo0zRx77UNcA6SIg8d3FndBb3MYsMZru1rjHobcbbU3gFvbjd4kG7x2WLsn7awH_KLzDRx7Z1OyfoWNTtq9xnSI9jrtIhz95il6uLq8r-ez2-b6pr64nfWMyjTLNoqqrgUCrWi1UYSVQvOOy5ZDqQTNw0KasjRSECFB82wrWiOY0lQVFZ-i05-9_RCeR4hpsbXRgHPaQxjjgskyv6mSVZHRk3_oJoxDtvmmlChUVUjGvwAPqG9p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684589562</pqid></control><display><type>article</type><title>Heterostructured ZnCo2O4–CoOOH nanosheets on Ni foam for a high performance bifunctional alkaline water splitting catalyst</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Congli ; Jiu, Hongfang ; Zhang, Lixin ; Song, Wei ; Zhang, Yufang ; Hao, Wei ; Xu, Qianwen ; Qin, Yaqi ; Che, Sicong ; Guo, Zhixin</creator><creatorcontrib>Wang, Congli ; Jiu, Hongfang ; Zhang, Lixin ; Song, Wei ; Zhang, Yufang ; Hao, Wei ; Xu, Qianwen ; Qin, Yaqi ; Che, Sicong ; Guo, Zhixin</creatorcontrib><description>It is of utmost importance to explore bifunctional electrocatalysts for water splitting. Herein, unique ZnCo2O4–CoOOH heterostructured ultrathin nanosheets on Ni foam are reported that combines a two-step hydrothermal method. This catalyst exhibits excellent catalytic performances to achieve a current density of 10 mA cm−2 with an ultralow overpotential of 115 mV for HER, attaining an overpotential of 238 mV at 20 mA cm−2 for OER. Remarkably, ZnCo2O4–CoOOH/Ni shows a voltage of 1.494 V to drive a current density of 10 mA cm−2. Such performances are due to the inter-penetrative pores present in the ultrathin nanosheets that provide large surface areas and expose massive active sites to enhance activities. In addition, the unique nanosheet structure and the 3D Ni foam substrate possess large specific surface areas, which can facilitate mass diffusion. This excellent performance is ascribed to the ZnCo2O4–CoOOH heterostructure that manipulates strong synergy to improve the electrochemical activity. This study offers new insight on an innovative approach for the exploitation of effective bifunctional electrocatalysts with a heterostructure.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d2dt00641c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysts ; Current density ; Electrocatalysts ; Heterostructures ; Metal foams ; Nanosheets ; Substrates ; Surface area ; Water splitting</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2022-07, Vol.51 (26), p.10061-10068</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Congli</creatorcontrib><creatorcontrib>Jiu, Hongfang</creatorcontrib><creatorcontrib>Zhang, Lixin</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Zhang, Yufang</creatorcontrib><creatorcontrib>Hao, Wei</creatorcontrib><creatorcontrib>Xu, Qianwen</creatorcontrib><creatorcontrib>Qin, Yaqi</creatorcontrib><creatorcontrib>Che, Sicong</creatorcontrib><creatorcontrib>Guo, Zhixin</creatorcontrib><title>Heterostructured ZnCo2O4–CoOOH nanosheets on Ni foam for a high performance bifunctional alkaline water splitting catalyst</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>It is of utmost importance to explore bifunctional electrocatalysts for water splitting. Herein, unique ZnCo2O4–CoOOH heterostructured ultrathin nanosheets on Ni foam are reported that combines a two-step hydrothermal method. This catalyst exhibits excellent catalytic performances to achieve a current density of 10 mA cm−2 with an ultralow overpotential of 115 mV for HER, attaining an overpotential of 238 mV at 20 mA cm−2 for OER. Remarkably, ZnCo2O4–CoOOH/Ni shows a voltage of 1.494 V to drive a current density of 10 mA cm−2. Such performances are due to the inter-penetrative pores present in the ultrathin nanosheets that provide large surface areas and expose massive active sites to enhance activities. In addition, the unique nanosheet structure and the 3D Ni foam substrate possess large specific surface areas, which can facilitate mass diffusion. This excellent performance is ascribed to the ZnCo2O4–CoOOH heterostructure that manipulates strong synergy to improve the electrochemical activity. This study offers new insight on an innovative approach for the exploitation of effective bifunctional electrocatalysts with a heterostructure.</description><subject>Catalysts</subject><subject>Current density</subject><subject>Electrocatalysts</subject><subject>Heterostructures</subject><subject>Metal foams</subject><subject>Nanosheets</subject><subject>Substrates</subject><subject>Surface area</subject><subject>Water splitting</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkL1KBDEQgIMoeJ42PkHAxuY0f5vNlrKoJ4jbaGNzZHOzdzlzybrJIoKF7-Ab-iRGFAub-eNjhm8QOqbkjBJenS_ZMhEiBTU7aEJFWc4qxsXuX83kPjqIcUMIY6RgE_Q2hwRDiGkYTRoHWOJHXwfWiM_3jzo0zRx77UNcA6SIg8d3FndBb3MYsMZru1rjHobcbbU3gFvbjd4kG7x2WLsn7awH_KLzDRx7Z1OyfoWNTtq9xnSI9jrtIhz95il6uLq8r-ez2-b6pr64nfWMyjTLNoqqrgUCrWi1UYSVQvOOy5ZDqQTNw0KasjRSECFB82wrWiOY0lQVFZ-i05-9_RCeR4hpsbXRgHPaQxjjgskyv6mSVZHRk3_oJoxDtvmmlChUVUjGvwAPqG9p</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Wang, Congli</creator><creator>Jiu, Hongfang</creator><creator>Zhang, Lixin</creator><creator>Song, Wei</creator><creator>Zhang, Yufang</creator><creator>Hao, Wei</creator><creator>Xu, Qianwen</creator><creator>Qin, Yaqi</creator><creator>Che, Sicong</creator><creator>Guo, Zhixin</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20220705</creationdate><title>Heterostructured ZnCo2O4–CoOOH nanosheets on Ni foam for a high performance bifunctional alkaline water splitting catalyst</title><author>Wang, Congli ; Jiu, Hongfang ; Zhang, Lixin ; Song, Wei ; Zhang, Yufang ; Hao, Wei ; Xu, Qianwen ; Qin, Yaqi ; Che, Sicong ; Guo, Zhixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-41c818fbe0eb4bac80274a3f36b3e78414ba56c77c64046ea31474bc428a18593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysts</topic><topic>Current density</topic><topic>Electrocatalysts</topic><topic>Heterostructures</topic><topic>Metal foams</topic><topic>Nanosheets</topic><topic>Substrates</topic><topic>Surface area</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Congli</creatorcontrib><creatorcontrib>Jiu, Hongfang</creatorcontrib><creatorcontrib>Zhang, Lixin</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Zhang, Yufang</creatorcontrib><creatorcontrib>Hao, Wei</creatorcontrib><creatorcontrib>Xu, Qianwen</creatorcontrib><creatorcontrib>Qin, Yaqi</creatorcontrib><creatorcontrib>Che, Sicong</creatorcontrib><creatorcontrib>Guo, Zhixin</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Congli</au><au>Jiu, Hongfang</au><au>Zhang, Lixin</au><au>Song, Wei</au><au>Zhang, Yufang</au><au>Hao, Wei</au><au>Xu, Qianwen</au><au>Qin, Yaqi</au><au>Che, Sicong</au><au>Guo, Zhixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterostructured ZnCo2O4–CoOOH nanosheets on Ni foam for a high performance bifunctional alkaline water splitting catalyst</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2022-07-05</date><risdate>2022</risdate><volume>51</volume><issue>26</issue><spage>10061</spage><epage>10068</epage><pages>10061-10068</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>It is of utmost importance to explore bifunctional electrocatalysts for water splitting. Herein, unique ZnCo2O4–CoOOH heterostructured ultrathin nanosheets on Ni foam are reported that combines a two-step hydrothermal method. This catalyst exhibits excellent catalytic performances to achieve a current density of 10 mA cm−2 with an ultralow overpotential of 115 mV for HER, attaining an overpotential of 238 mV at 20 mA cm−2 for OER. Remarkably, ZnCo2O4–CoOOH/Ni shows a voltage of 1.494 V to drive a current density of 10 mA cm−2. Such performances are due to the inter-penetrative pores present in the ultrathin nanosheets that provide large surface areas and expose massive active sites to enhance activities. In addition, the unique nanosheet structure and the 3D Ni foam substrate possess large specific surface areas, which can facilitate mass diffusion. This excellent performance is ascribed to the ZnCo2O4–CoOOH heterostructure that manipulates strong synergy to improve the electrochemical activity. This study offers new insight on an innovative approach for the exploitation of effective bifunctional electrocatalysts with a heterostructure.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2dt00641c</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-9226 |
ispartof | Dalton transactions : an international journal of inorganic chemistry, 2022-07, Vol.51 (26), p.10061-10068 |
issn | 1477-9226 1477-9234 |
language | eng |
recordid | cdi_proquest_miscellaneous_2679239695 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Catalysts Current density Electrocatalysts Heterostructures Metal foams Nanosheets Substrates Surface area Water splitting |
title | Heterostructured ZnCo2O4–CoOOH nanosheets on Ni foam for a high performance bifunctional alkaline water splitting catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterostructured%20ZnCo2O4%E2%80%93CoOOH%20nanosheets%20on%20Ni%20foam%20for%20a%20high%20performance%20bifunctional%20alkaline%20water%20splitting%20catalyst&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Wang,%20Congli&rft.date=2022-07-05&rft.volume=51&rft.issue=26&rft.spage=10061&rft.epage=10068&rft.pages=10061-10068&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d2dt00641c&rft_dat=%3Cproquest%3E2684589562%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684589562&rft_id=info:pmid/&rfr_iscdi=true |