Heterostructured ZnCo2O4–CoOOH nanosheets on Ni foam for a high performance bifunctional alkaline water splitting catalyst

It is of utmost importance to explore bifunctional electrocatalysts for water splitting. Herein, unique ZnCo2O4–CoOOH heterostructured ultrathin nanosheets on Ni foam are reported that combines a two-step hydrothermal method. This catalyst exhibits excellent catalytic performances to achieve a curre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2022-07, Vol.51 (26), p.10061-10068
Hauptverfasser: Wang, Congli, Jiu, Hongfang, Zhang, Lixin, Song, Wei, Zhang, Yufang, Hao, Wei, Xu, Qianwen, Qin, Yaqi, Che, Sicong, Guo, Zhixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10068
container_issue 26
container_start_page 10061
container_title Dalton transactions : an international journal of inorganic chemistry
container_volume 51
creator Wang, Congli
Jiu, Hongfang
Zhang, Lixin
Song, Wei
Zhang, Yufang
Hao, Wei
Xu, Qianwen
Qin, Yaqi
Che, Sicong
Guo, Zhixin
description It is of utmost importance to explore bifunctional electrocatalysts for water splitting. Herein, unique ZnCo2O4–CoOOH heterostructured ultrathin nanosheets on Ni foam are reported that combines a two-step hydrothermal method. This catalyst exhibits excellent catalytic performances to achieve a current density of 10 mA cm−2 with an ultralow overpotential of 115 mV for HER, attaining an overpotential of 238 mV at 20 mA cm−2 for OER. Remarkably, ZnCo2O4–CoOOH/Ni shows a voltage of 1.494 V to drive a current density of 10 mA cm−2. Such performances are due to the inter-penetrative pores present in the ultrathin nanosheets that provide large surface areas and expose massive active sites to enhance activities. In addition, the unique nanosheet structure and the 3D Ni foam substrate possess large specific surface areas, which can facilitate mass diffusion. This excellent performance is ascribed to the ZnCo2O4–CoOOH heterostructure that manipulates strong synergy to improve the electrochemical activity. This study offers new insight on an innovative approach for the exploitation of effective bifunctional electrocatalysts with a heterostructure.
doi_str_mv 10.1039/d2dt00641c
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2679239695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684589562</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-41c818fbe0eb4bac80274a3f36b3e78414ba56c77c64046ea31474bc428a18593</originalsourceid><addsrcrecordid>eNpdkL1KBDEQgIMoeJ42PkHAxuY0f5vNlrKoJ4jbaGNzZHOzdzlzybrJIoKF7-Ab-iRGFAub-eNjhm8QOqbkjBJenS_ZMhEiBTU7aEJFWc4qxsXuX83kPjqIcUMIY6RgE_Q2hwRDiGkYTRoHWOJHXwfWiM_3jzo0zRx77UNcA6SIg8d3FndBb3MYsMZru1rjHobcbbU3gFvbjd4kG7x2WLsn7awH_KLzDRx7Z1OyfoWNTtq9xnSI9jrtIhz95il6uLq8r-ez2-b6pr64nfWMyjTLNoqqrgUCrWi1UYSVQvOOy5ZDqQTNw0KasjRSECFB82wrWiOY0lQVFZ-i05-9_RCeR4hpsbXRgHPaQxjjgskyv6mSVZHRk3_oJoxDtvmmlChUVUjGvwAPqG9p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684589562</pqid></control><display><type>article</type><title>Heterostructured ZnCo2O4–CoOOH nanosheets on Ni foam for a high performance bifunctional alkaline water splitting catalyst</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Wang, Congli ; Jiu, Hongfang ; Zhang, Lixin ; Song, Wei ; Zhang, Yufang ; Hao, Wei ; Xu, Qianwen ; Qin, Yaqi ; Che, Sicong ; Guo, Zhixin</creator><creatorcontrib>Wang, Congli ; Jiu, Hongfang ; Zhang, Lixin ; Song, Wei ; Zhang, Yufang ; Hao, Wei ; Xu, Qianwen ; Qin, Yaqi ; Che, Sicong ; Guo, Zhixin</creatorcontrib><description>It is of utmost importance to explore bifunctional electrocatalysts for water splitting. Herein, unique ZnCo2O4–CoOOH heterostructured ultrathin nanosheets on Ni foam are reported that combines a two-step hydrothermal method. This catalyst exhibits excellent catalytic performances to achieve a current density of 10 mA cm−2 with an ultralow overpotential of 115 mV for HER, attaining an overpotential of 238 mV at 20 mA cm−2 for OER. Remarkably, ZnCo2O4–CoOOH/Ni shows a voltage of 1.494 V to drive a current density of 10 mA cm−2. Such performances are due to the inter-penetrative pores present in the ultrathin nanosheets that provide large surface areas and expose massive active sites to enhance activities. In addition, the unique nanosheet structure and the 3D Ni foam substrate possess large specific surface areas, which can facilitate mass diffusion. This excellent performance is ascribed to the ZnCo2O4–CoOOH heterostructure that manipulates strong synergy to improve the electrochemical activity. This study offers new insight on an innovative approach for the exploitation of effective bifunctional electrocatalysts with a heterostructure.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/d2dt00641c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Catalysts ; Current density ; Electrocatalysts ; Heterostructures ; Metal foams ; Nanosheets ; Substrates ; Surface area ; Water splitting</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2022-07, Vol.51 (26), p.10061-10068</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Congli</creatorcontrib><creatorcontrib>Jiu, Hongfang</creatorcontrib><creatorcontrib>Zhang, Lixin</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Zhang, Yufang</creatorcontrib><creatorcontrib>Hao, Wei</creatorcontrib><creatorcontrib>Xu, Qianwen</creatorcontrib><creatorcontrib>Qin, Yaqi</creatorcontrib><creatorcontrib>Che, Sicong</creatorcontrib><creatorcontrib>Guo, Zhixin</creatorcontrib><title>Heterostructured ZnCo2O4–CoOOH nanosheets on Ni foam for a high performance bifunctional alkaline water splitting catalyst</title><title>Dalton transactions : an international journal of inorganic chemistry</title><description>It is of utmost importance to explore bifunctional electrocatalysts for water splitting. Herein, unique ZnCo2O4–CoOOH heterostructured ultrathin nanosheets on Ni foam are reported that combines a two-step hydrothermal method. This catalyst exhibits excellent catalytic performances to achieve a current density of 10 mA cm−2 with an ultralow overpotential of 115 mV for HER, attaining an overpotential of 238 mV at 20 mA cm−2 for OER. Remarkably, ZnCo2O4–CoOOH/Ni shows a voltage of 1.494 V to drive a current density of 10 mA cm−2. Such performances are due to the inter-penetrative pores present in the ultrathin nanosheets that provide large surface areas and expose massive active sites to enhance activities. In addition, the unique nanosheet structure and the 3D Ni foam substrate possess large specific surface areas, which can facilitate mass diffusion. This excellent performance is ascribed to the ZnCo2O4–CoOOH heterostructure that manipulates strong synergy to improve the electrochemical activity. This study offers new insight on an innovative approach for the exploitation of effective bifunctional electrocatalysts with a heterostructure.</description><subject>Catalysts</subject><subject>Current density</subject><subject>Electrocatalysts</subject><subject>Heterostructures</subject><subject>Metal foams</subject><subject>Nanosheets</subject><subject>Substrates</subject><subject>Surface area</subject><subject>Water splitting</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkL1KBDEQgIMoeJ42PkHAxuY0f5vNlrKoJ4jbaGNzZHOzdzlzybrJIoKF7-Ab-iRGFAub-eNjhm8QOqbkjBJenS_ZMhEiBTU7aEJFWc4qxsXuX83kPjqIcUMIY6RgE_Q2hwRDiGkYTRoHWOJHXwfWiM_3jzo0zRx77UNcA6SIg8d3FndBb3MYsMZru1rjHobcbbU3gFvbjd4kG7x2WLsn7awH_KLzDRx7Z1OyfoWNTtq9xnSI9jrtIhz95il6uLq8r-ez2-b6pr64nfWMyjTLNoqqrgUCrWi1UYSVQvOOy5ZDqQTNw0KasjRSECFB82wrWiOY0lQVFZ-i05-9_RCeR4hpsbXRgHPaQxjjgskyv6mSVZHRk3_oJoxDtvmmlChUVUjGvwAPqG9p</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Wang, Congli</creator><creator>Jiu, Hongfang</creator><creator>Zhang, Lixin</creator><creator>Song, Wei</creator><creator>Zhang, Yufang</creator><creator>Hao, Wei</creator><creator>Xu, Qianwen</creator><creator>Qin, Yaqi</creator><creator>Che, Sicong</creator><creator>Guo, Zhixin</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20220705</creationdate><title>Heterostructured ZnCo2O4–CoOOH nanosheets on Ni foam for a high performance bifunctional alkaline water splitting catalyst</title><author>Wang, Congli ; Jiu, Hongfang ; Zhang, Lixin ; Song, Wei ; Zhang, Yufang ; Hao, Wei ; Xu, Qianwen ; Qin, Yaqi ; Che, Sicong ; Guo, Zhixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-41c818fbe0eb4bac80274a3f36b3e78414ba56c77c64046ea31474bc428a18593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysts</topic><topic>Current density</topic><topic>Electrocatalysts</topic><topic>Heterostructures</topic><topic>Metal foams</topic><topic>Nanosheets</topic><topic>Substrates</topic><topic>Surface area</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Congli</creatorcontrib><creatorcontrib>Jiu, Hongfang</creatorcontrib><creatorcontrib>Zhang, Lixin</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Zhang, Yufang</creatorcontrib><creatorcontrib>Hao, Wei</creatorcontrib><creatorcontrib>Xu, Qianwen</creatorcontrib><creatorcontrib>Qin, Yaqi</creatorcontrib><creatorcontrib>Che, Sicong</creatorcontrib><creatorcontrib>Guo, Zhixin</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Congli</au><au>Jiu, Hongfang</au><au>Zhang, Lixin</au><au>Song, Wei</au><au>Zhang, Yufang</au><au>Hao, Wei</au><au>Xu, Qianwen</au><au>Qin, Yaqi</au><au>Che, Sicong</au><au>Guo, Zhixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterostructured ZnCo2O4–CoOOH nanosheets on Ni foam for a high performance bifunctional alkaline water splitting catalyst</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><date>2022-07-05</date><risdate>2022</risdate><volume>51</volume><issue>26</issue><spage>10061</spage><epage>10068</epage><pages>10061-10068</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>It is of utmost importance to explore bifunctional electrocatalysts for water splitting. Herein, unique ZnCo2O4–CoOOH heterostructured ultrathin nanosheets on Ni foam are reported that combines a two-step hydrothermal method. This catalyst exhibits excellent catalytic performances to achieve a current density of 10 mA cm−2 with an ultralow overpotential of 115 mV for HER, attaining an overpotential of 238 mV at 20 mA cm−2 for OER. Remarkably, ZnCo2O4–CoOOH/Ni shows a voltage of 1.494 V to drive a current density of 10 mA cm−2. Such performances are due to the inter-penetrative pores present in the ultrathin nanosheets that provide large surface areas and expose massive active sites to enhance activities. In addition, the unique nanosheet structure and the 3D Ni foam substrate possess large specific surface areas, which can facilitate mass diffusion. This excellent performance is ascribed to the ZnCo2O4–CoOOH heterostructure that manipulates strong synergy to improve the electrochemical activity. This study offers new insight on an innovative approach for the exploitation of effective bifunctional electrocatalysts with a heterostructure.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2dt00641c</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1477-9226
ispartof Dalton transactions : an international journal of inorganic chemistry, 2022-07, Vol.51 (26), p.10061-10068
issn 1477-9226
1477-9234
language eng
recordid cdi_proquest_miscellaneous_2679239695
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Catalysts
Current density
Electrocatalysts
Heterostructures
Metal foams
Nanosheets
Substrates
Surface area
Water splitting
title Heterostructured ZnCo2O4–CoOOH nanosheets on Ni foam for a high performance bifunctional alkaline water splitting catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A02%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterostructured%20ZnCo2O4%E2%80%93CoOOH%20nanosheets%20on%20Ni%20foam%20for%20a%20high%20performance%20bifunctional%20alkaline%20water%20splitting%20catalyst&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Wang,%20Congli&rft.date=2022-07-05&rft.volume=51&rft.issue=26&rft.spage=10061&rft.epage=10068&rft.pages=10061-10068&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/d2dt00641c&rft_dat=%3Cproquest%3E2684589562%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684589562&rft_id=info:pmid/&rfr_iscdi=true