SPIDA: Abstracting and generalizing layout design cases

Abstraction and generalization of layout design cases generate new knowledge that is more widely applicable to use than specific design cases. The abstraction and generalization of design cases into hierarchical levels of abstractions provide the designer with the flexibility to apply any level of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AI EDAM 1998-04, Vol.12 (2), p.141-159
Hauptverfasser: MANFAAT, D., DUFFY, A.H.B., LEE, B.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 2
container_start_page 141
container_title AI EDAM
container_volume 12
creator MANFAAT, D.
DUFFY, A.H.B.
LEE, B.S.
description Abstraction and generalization of layout design cases generate new knowledge that is more widely applicable to use than specific design cases. The abstraction and generalization of design cases into hierarchical levels of abstractions provide the designer with the flexibility to apply any level of abstract and generalized knowledge for a new layout design problem. Existing case-based layout learning (CBLL) systems abstract and generalize cases into single levels of abstractions, but not into a hierarchy. In this paper, we propose a new approach, termed customized viewpoint—spatial (CV–S), which supports the generalization and abstraction of spatial layouts into hierarchies along with a supporting system, SPIDA (SPatial Intelligent Design Assistant).
doi_str_mv 10.1017/S0890060498122060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26789464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0890060498122060</cupid><sourcerecordid>26789464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-24d45c0ce85ed171f3e02aa2b75d95e89d1141c0baa0f6a71dae2c13a1a3e0b73</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA9gysQV8iWPHbFWBUlQJqgIDi3WxnSglTcBOJMqvJ1ErFiRuudPd9-5Jj5BzoJdAQVytaCop5ZTJFKKoHw7ICBiXIQhOD8loOIfD_ZiceL-mfcmEjYhYPc1vJtfBJPOtQ92WdRFgbYLC1tZhVX4Piwq3TdcGxvqyqAON3vpTcpRj5e3Zvo_Jy93t8_Q-XDzO5tPJItSxlG0YMcMSTbVNE2tAQB5bGiFGmUiMTGwqDQADTTNEmnMUYNBGGmIE7MlMxGNysfv74ZrPzvpWbUqvbVVhbZvOq4iLVDLOehB2oHaN987m6sOVG3RbBVQNEak_EfWacKcpfWu_fgXo3hUXsUgUny2VXL69UvHA1aLn470HbjJXmsKqddO5ug_gH5cf2Dx2kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26789464</pqid></control><display><type>article</type><title>SPIDA: Abstracting and generalizing layout design cases</title><source>Cambridge University Press Journals Complete</source><creator>MANFAAT, D. ; DUFFY, A.H.B. ; LEE, B.S.</creator><creatorcontrib>MANFAAT, D. ; DUFFY, A.H.B. ; LEE, B.S.</creatorcontrib><description>Abstraction and generalization of layout design cases generate new knowledge that is more widely applicable to use than specific design cases. The abstraction and generalization of design cases into hierarchical levels of abstractions provide the designer with the flexibility to apply any level of abstract and generalized knowledge for a new layout design problem. Existing case-based layout learning (CBLL) systems abstract and generalize cases into single levels of abstractions, but not into a hierarchy. In this paper, we propose a new approach, termed customized viewpoint—spatial (CV–S), which supports the generalization and abstraction of spatial layouts into hierarchies along with a supporting system, SPIDA (SPatial Intelligent Design Assistant).</description><identifier>ISSN: 0890-0604</identifier><identifier>EISSN: 1469-1760</identifier><identifier>DOI: 10.1017/S0890060498122060</identifier><language>eng</language><publisher>Cambridge University Press</publisher><subject>Abstraction ; Generalization ; Machine Learning ; Pattern Matching ; Spatial Layout Design</subject><ispartof>AI EDAM, 1998-04, Vol.12 (2), p.141-159</ispartof><rights>1998 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-24d45c0ce85ed171f3e02aa2b75d95e89d1141c0baa0f6a71dae2c13a1a3e0b73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0890060498122060/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>MANFAAT, D.</creatorcontrib><creatorcontrib>DUFFY, A.H.B.</creatorcontrib><creatorcontrib>LEE, B.S.</creatorcontrib><title>SPIDA: Abstracting and generalizing layout design cases</title><title>AI EDAM</title><addtitle>AIEDAM</addtitle><description>Abstraction and generalization of layout design cases generate new knowledge that is more widely applicable to use than specific design cases. The abstraction and generalization of design cases into hierarchical levels of abstractions provide the designer with the flexibility to apply any level of abstract and generalized knowledge for a new layout design problem. Existing case-based layout learning (CBLL) systems abstract and generalize cases into single levels of abstractions, but not into a hierarchy. In this paper, we propose a new approach, termed customized viewpoint—spatial (CV–S), which supports the generalization and abstraction of spatial layouts into hierarchies along with a supporting system, SPIDA (SPatial Intelligent Design Assistant).</description><subject>Abstraction</subject><subject>Generalization</subject><subject>Machine Learning</subject><subject>Pattern Matching</subject><subject>Spatial Layout Design</subject><issn>0890-0604</issn><issn>1469-1760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwA9gysQV8iWPHbFWBUlQJqgIDi3WxnSglTcBOJMqvJ1ErFiRuudPd9-5Jj5BzoJdAQVytaCop5ZTJFKKoHw7ICBiXIQhOD8loOIfD_ZiceL-mfcmEjYhYPc1vJtfBJPOtQ92WdRFgbYLC1tZhVX4Piwq3TdcGxvqyqAON3vpTcpRj5e3Zvo_Jy93t8_Q-XDzO5tPJItSxlG0YMcMSTbVNE2tAQB5bGiFGmUiMTGwqDQADTTNEmnMUYNBGGmIE7MlMxGNysfv74ZrPzvpWbUqvbVVhbZvOq4iLVDLOehB2oHaN987m6sOVG3RbBVQNEak_EfWacKcpfWu_fgXo3hUXsUgUny2VXL69UvHA1aLn470HbjJXmsKqddO5ug_gH5cf2Dx2kg</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>MANFAAT, D.</creator><creator>DUFFY, A.H.B.</creator><creator>LEE, B.S.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980401</creationdate><title>SPIDA: Abstracting and generalizing layout design cases</title><author>MANFAAT, D. ; DUFFY, A.H.B. ; LEE, B.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-24d45c0ce85ed171f3e02aa2b75d95e89d1141c0baa0f6a71dae2c13a1a3e0b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Abstraction</topic><topic>Generalization</topic><topic>Machine Learning</topic><topic>Pattern Matching</topic><topic>Spatial Layout Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MANFAAT, D.</creatorcontrib><creatorcontrib>DUFFY, A.H.B.</creatorcontrib><creatorcontrib>LEE, B.S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>AI EDAM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MANFAAT, D.</au><au>DUFFY, A.H.B.</au><au>LEE, B.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPIDA: Abstracting and generalizing layout design cases</atitle><jtitle>AI EDAM</jtitle><addtitle>AIEDAM</addtitle><date>1998-04-01</date><risdate>1998</risdate><volume>12</volume><issue>2</issue><spage>141</spage><epage>159</epage><pages>141-159</pages><issn>0890-0604</issn><eissn>1469-1760</eissn><abstract>Abstraction and generalization of layout design cases generate new knowledge that is more widely applicable to use than specific design cases. The abstraction and generalization of design cases into hierarchical levels of abstractions provide the designer with the flexibility to apply any level of abstract and generalized knowledge for a new layout design problem. Existing case-based layout learning (CBLL) systems abstract and generalize cases into single levels of abstractions, but not into a hierarchy. In this paper, we propose a new approach, termed customized viewpoint—spatial (CV–S), which supports the generalization and abstraction of spatial layouts into hierarchies along with a supporting system, SPIDA (SPatial Intelligent Design Assistant).</abstract><pub>Cambridge University Press</pub><doi>10.1017/S0890060498122060</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-0604
ispartof AI EDAM, 1998-04, Vol.12 (2), p.141-159
issn 0890-0604
1469-1760
language eng
recordid cdi_proquest_miscellaneous_26789464
source Cambridge University Press Journals Complete
subjects Abstraction
Generalization
Machine Learning
Pattern Matching
Spatial Layout Design
title SPIDA: Abstracting and generalizing layout design cases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A10%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPIDA:%20Abstracting%20and%20generalizing%20layout%20design%20cases&rft.jtitle=AI%20EDAM&rft.au=MANFAAT,%20D.&rft.date=1998-04-01&rft.volume=12&rft.issue=2&rft.spage=141&rft.epage=159&rft.pages=141-159&rft.issn=0890-0604&rft.eissn=1469-1760&rft_id=info:doi/10.1017/S0890060498122060&rft_dat=%3Cproquest_cross%3E26789464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26789464&rft_id=info:pmid/&rft_cupid=10_1017_S0890060498122060&rfr_iscdi=true