Codimension-2 parameter space structure of continuous-time recurrent neural networks
If we are ever to move beyond the study of isolated special cases in theoretical neuroscience, we need to develop more general theories of neural circuits over a given neural model. The present paper considers this challenge in the context of continuous-time recurrent neural networks (CTRNNs), a sim...
Gespeichert in:
Veröffentlicht in: | Biological cybernetics 2022-08, Vol.116 (4), p.501-515 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 515 |
---|---|
container_issue | 4 |
container_start_page | 501 |
container_title | Biological cybernetics |
container_volume | 116 |
creator | Beer, Randall D. |
description | If we are ever to move beyond the study of isolated special cases in theoretical neuroscience, we need to develop more general theories of neural circuits over a given neural model. The present paper considers this challenge in the context of continuous-time recurrent neural networks (CTRNNs), a simple but dynamically universal model that has been widely utilized in both computational neuroscience and neural networks. Here, we extend previous work on the parameter space structure of codimension-1 local bifurcations in CTRNNs to include codimension-2 local bifurcation manifolds. Specifically, we derive the necessary conditions for all generic local codimension-2 bifurcations for general CTRNNs, specialize these conditions to circuits containing from one to four neurons, illustrate in full detail the application of these conditions to example circuits, derive closed-form expressions for these bifurcation manifolds where possible, and demonstrate how this analysis allows us to find and trace several global codimension-1 bifurcation manifolds that originate from the codimension-2 bifurcations. |
doi_str_mv | 10.1007/s00422-022-00938-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2678741059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689980680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-233cd7b204975b6a2275d200fab96541d8b1f740b28cf6ce1259dac070e206b83</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8FL16qk7Rp2qMs_gPBy3oOaZpK1zZZJwnitzelguLBw_Bm4PeGxyPknMIVBRDXHqBkLId5oCnqnB-QFS2LdAoBh7_2Y3Li_Q4SxXizItuN64bJWD84m7Nsr1BNJhjM_F5pk_mAUYeIJnN9pp0Ng40u-jwkT4ZGR0RjQ2ZNRDUmCR8O3_wpOerV6M3Zt67Jy93tdvOQPz3fP25unnJdcBZyVhS6Ey2DshG8rRRjgncMoFdtU_GSdnVLe1FCy2rdV9rQlLhTGgQYBlVbF2tyufzdo3uPxgc5DV6bcVTWpJSSVaIWJQXeJPTiD7pzEW1Kl6i6aWqoakgUWyiNzns0vdzjMCn8lBTkXLRcipYwz1y05MlULCafYPtq8Of1P64v4jmApA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689980680</pqid></control><display><type>article</type><title>Codimension-2 parameter space structure of continuous-time recurrent neural networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Beer, Randall D.</creator><creatorcontrib>Beer, Randall D.</creatorcontrib><description>If we are ever to move beyond the study of isolated special cases in theoretical neuroscience, we need to develop more general theories of neural circuits over a given neural model. The present paper considers this challenge in the context of continuous-time recurrent neural networks (CTRNNs), a simple but dynamically universal model that has been widely utilized in both computational neuroscience and neural networks. Here, we extend previous work on the parameter space structure of codimension-1 local bifurcations in CTRNNs to include codimension-2 local bifurcation manifolds. Specifically, we derive the necessary conditions for all generic local codimension-2 bifurcations for general CTRNNs, specialize these conditions to circuits containing from one to four neurons, illustrate in full detail the application of these conditions to example circuits, derive closed-form expressions for these bifurcation manifolds where possible, and demonstrate how this analysis allows us to find and trace several global codimension-1 bifurcation manifolds that originate from the codimension-2 bifurcations.</description><identifier>ISSN: 1432-0770</identifier><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s00422-022-00938-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bifurcations ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Chaos theory ; Circuits ; Complex Systems ; Computational neuroscience ; Computer Appl. in Life Sciences ; Manifolds ; Mathematical models ; Nervous system ; Neural networks ; Neurobiology ; Neurosciences ; Original Article ; Parameters ; Recurrent neural networks</subject><ispartof>Biological cybernetics, 2022-08, Vol.116 (4), p.501-515</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-233cd7b204975b6a2275d200fab96541d8b1f740b28cf6ce1259dac070e206b83</citedby><cites>FETCH-LOGICAL-c352t-233cd7b204975b6a2275d200fab96541d8b1f740b28cf6ce1259dac070e206b83</cites><orcidid>0000-0001-7279-3028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00422-022-00938-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00422-022-00938-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Beer, Randall D.</creatorcontrib><title>Codimension-2 parameter space structure of continuous-time recurrent neural networks</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><description>If we are ever to move beyond the study of isolated special cases in theoretical neuroscience, we need to develop more general theories of neural circuits over a given neural model. The present paper considers this challenge in the context of continuous-time recurrent neural networks (CTRNNs), a simple but dynamically universal model that has been widely utilized in both computational neuroscience and neural networks. Here, we extend previous work on the parameter space structure of codimension-1 local bifurcations in CTRNNs to include codimension-2 local bifurcation manifolds. Specifically, we derive the necessary conditions for all generic local codimension-2 bifurcations for general CTRNNs, specialize these conditions to circuits containing from one to four neurons, illustrate in full detail the application of these conditions to example circuits, derive closed-form expressions for these bifurcation manifolds where possible, and demonstrate how this analysis allows us to find and trace several global codimension-1 bifurcation manifolds that originate from the codimension-2 bifurcations.</description><subject>Bifurcations</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Chaos theory</subject><subject>Circuits</subject><subject>Complex Systems</subject><subject>Computational neuroscience</subject><subject>Computer Appl. in Life Sciences</subject><subject>Manifolds</subject><subject>Mathematical models</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Recurrent neural networks</subject><issn>1432-0770</issn><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AU8FL16qk7Rp2qMs_gPBy3oOaZpK1zZZJwnitzelguLBw_Bm4PeGxyPknMIVBRDXHqBkLId5oCnqnB-QFS2LdAoBh7_2Y3Li_Q4SxXizItuN64bJWD84m7Nsr1BNJhjM_F5pk_mAUYeIJnN9pp0Ng40u-jwkT4ZGR0RjQ2ZNRDUmCR8O3_wpOerV6M3Zt67Jy93tdvOQPz3fP25unnJdcBZyVhS6Ey2DshG8rRRjgncMoFdtU_GSdnVLe1FCy2rdV9rQlLhTGgQYBlVbF2tyufzdo3uPxgc5DV6bcVTWpJSSVaIWJQXeJPTiD7pzEW1Kl6i6aWqoakgUWyiNzns0vdzjMCn8lBTkXLRcipYwz1y05MlULCafYPtq8Of1P64v4jmApA</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Beer, Randall D.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7279-3028</orcidid></search><sort><creationdate>20220801</creationdate><title>Codimension-2 parameter space structure of continuous-time recurrent neural networks</title><author>Beer, Randall D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-233cd7b204975b6a2275d200fab96541d8b1f740b28cf6ce1259dac070e206b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bifurcations</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Chaos theory</topic><topic>Circuits</topic><topic>Complex Systems</topic><topic>Computational neuroscience</topic><topic>Computer Appl. in Life Sciences</topic><topic>Manifolds</topic><topic>Mathematical models</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Recurrent neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beer, Randall D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beer, Randall D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Codimension-2 parameter space structure of continuous-time recurrent neural networks</atitle><jtitle>Biological cybernetics</jtitle><stitle>Biol Cybern</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>116</volume><issue>4</issue><spage>501</spage><epage>515</epage><pages>501-515</pages><issn>1432-0770</issn><issn>0340-1200</issn><eissn>1432-0770</eissn><abstract>If we are ever to move beyond the study of isolated special cases in theoretical neuroscience, we need to develop more general theories of neural circuits over a given neural model. The present paper considers this challenge in the context of continuous-time recurrent neural networks (CTRNNs), a simple but dynamically universal model that has been widely utilized in both computational neuroscience and neural networks. Here, we extend previous work on the parameter space structure of codimension-1 local bifurcations in CTRNNs to include codimension-2 local bifurcation manifolds. Specifically, we derive the necessary conditions for all generic local codimension-2 bifurcations for general CTRNNs, specialize these conditions to circuits containing from one to four neurons, illustrate in full detail the application of these conditions to example circuits, derive closed-form expressions for these bifurcation manifolds where possible, and demonstrate how this analysis allows us to find and trace several global codimension-1 bifurcation manifolds that originate from the codimension-2 bifurcations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00422-022-00938-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7279-3028</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-0770 |
ispartof | Biological cybernetics, 2022-08, Vol.116 (4), p.501-515 |
issn | 1432-0770 0340-1200 1432-0770 |
language | eng |
recordid | cdi_proquest_miscellaneous_2678741059 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bifurcations Bioinformatics Biomedical and Life Sciences Biomedicine Chaos theory Circuits Complex Systems Computational neuroscience Computer Appl. in Life Sciences Manifolds Mathematical models Nervous system Neural networks Neurobiology Neurosciences Original Article Parameters Recurrent neural networks |
title | Codimension-2 parameter space structure of continuous-time recurrent neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Codimension-2%20parameter%20space%20structure%20of%20continuous-time%20recurrent%20neural%20networks&rft.jtitle=Biological%20cybernetics&rft.au=Beer,%20Randall%20D.&rft.date=2022-08-01&rft.volume=116&rft.issue=4&rft.spage=501&rft.epage=515&rft.pages=501-515&rft.issn=1432-0770&rft.eissn=1432-0770&rft_id=info:doi/10.1007/s00422-022-00938-5&rft_dat=%3Cproquest_cross%3E2689980680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689980680&rft_id=info:pmid/&rfr_iscdi=true |