Codimension-2 parameter space structure of continuous-time recurrent neural networks

If we are ever to move beyond the study of isolated special cases in theoretical neuroscience, we need to develop more general theories of neural circuits over a given neural model. The present paper considers this challenge in the context of continuous-time recurrent neural networks (CTRNNs), a sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological cybernetics 2022-08, Vol.116 (4), p.501-515
1. Verfasser: Beer, Randall D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 515
container_issue 4
container_start_page 501
container_title Biological cybernetics
container_volume 116
creator Beer, Randall D.
description If we are ever to move beyond the study of isolated special cases in theoretical neuroscience, we need to develop more general theories of neural circuits over a given neural model. The present paper considers this challenge in the context of continuous-time recurrent neural networks (CTRNNs), a simple but dynamically universal model that has been widely utilized in both computational neuroscience and neural networks. Here, we extend previous work on the parameter space structure of codimension-1 local bifurcations in CTRNNs to include codimension-2 local bifurcation manifolds. Specifically, we derive the necessary conditions for all generic local codimension-2 bifurcations for general CTRNNs, specialize these conditions to circuits containing from one to four neurons, illustrate in full detail the application of these conditions to example circuits, derive closed-form expressions for these bifurcation manifolds where possible, and demonstrate how this analysis allows us to find and trace several global codimension-1 bifurcation manifolds that originate from the codimension-2 bifurcations.
doi_str_mv 10.1007/s00422-022-00938-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2678741059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689980680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-233cd7b204975b6a2275d200fab96541d8b1f740b28cf6ce1259dac070e206b83</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8FL16qk7Rp2qMs_gPBy3oOaZpK1zZZJwnitzelguLBw_Bm4PeGxyPknMIVBRDXHqBkLId5oCnqnB-QFS2LdAoBh7_2Y3Li_Q4SxXizItuN64bJWD84m7Nsr1BNJhjM_F5pk_mAUYeIJnN9pp0Ng40u-jwkT4ZGR0RjQ2ZNRDUmCR8O3_wpOerV6M3Zt67Jy93tdvOQPz3fP25unnJdcBZyVhS6Ey2DshG8rRRjgncMoFdtU_GSdnVLe1FCy2rdV9rQlLhTGgQYBlVbF2tyufzdo3uPxgc5DV6bcVTWpJSSVaIWJQXeJPTiD7pzEW1Kl6i6aWqoakgUWyiNzns0vdzjMCn8lBTkXLRcipYwz1y05MlULCafYPtq8Of1P64v4jmApA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689980680</pqid></control><display><type>article</type><title>Codimension-2 parameter space structure of continuous-time recurrent neural networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Beer, Randall D.</creator><creatorcontrib>Beer, Randall D.</creatorcontrib><description>If we are ever to move beyond the study of isolated special cases in theoretical neuroscience, we need to develop more general theories of neural circuits over a given neural model. The present paper considers this challenge in the context of continuous-time recurrent neural networks (CTRNNs), a simple but dynamically universal model that has been widely utilized in both computational neuroscience and neural networks. Here, we extend previous work on the parameter space structure of codimension-1 local bifurcations in CTRNNs to include codimension-2 local bifurcation manifolds. Specifically, we derive the necessary conditions for all generic local codimension-2 bifurcations for general CTRNNs, specialize these conditions to circuits containing from one to four neurons, illustrate in full detail the application of these conditions to example circuits, derive closed-form expressions for these bifurcation manifolds where possible, and demonstrate how this analysis allows us to find and trace several global codimension-1 bifurcation manifolds that originate from the codimension-2 bifurcations.</description><identifier>ISSN: 1432-0770</identifier><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s00422-022-00938-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bifurcations ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Chaos theory ; Circuits ; Complex Systems ; Computational neuroscience ; Computer Appl. in Life Sciences ; Manifolds ; Mathematical models ; Nervous system ; Neural networks ; Neurobiology ; Neurosciences ; Original Article ; Parameters ; Recurrent neural networks</subject><ispartof>Biological cybernetics, 2022-08, Vol.116 (4), p.501-515</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-233cd7b204975b6a2275d200fab96541d8b1f740b28cf6ce1259dac070e206b83</citedby><cites>FETCH-LOGICAL-c352t-233cd7b204975b6a2275d200fab96541d8b1f740b28cf6ce1259dac070e206b83</cites><orcidid>0000-0001-7279-3028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00422-022-00938-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00422-022-00938-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Beer, Randall D.</creatorcontrib><title>Codimension-2 parameter space structure of continuous-time recurrent neural networks</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><description>If we are ever to move beyond the study of isolated special cases in theoretical neuroscience, we need to develop more general theories of neural circuits over a given neural model. The present paper considers this challenge in the context of continuous-time recurrent neural networks (CTRNNs), a simple but dynamically universal model that has been widely utilized in both computational neuroscience and neural networks. Here, we extend previous work on the parameter space structure of codimension-1 local bifurcations in CTRNNs to include codimension-2 local bifurcation manifolds. Specifically, we derive the necessary conditions for all generic local codimension-2 bifurcations for general CTRNNs, specialize these conditions to circuits containing from one to four neurons, illustrate in full detail the application of these conditions to example circuits, derive closed-form expressions for these bifurcation manifolds where possible, and demonstrate how this analysis allows us to find and trace several global codimension-1 bifurcation manifolds that originate from the codimension-2 bifurcations.</description><subject>Bifurcations</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Chaos theory</subject><subject>Circuits</subject><subject>Complex Systems</subject><subject>Computational neuroscience</subject><subject>Computer Appl. in Life Sciences</subject><subject>Manifolds</subject><subject>Mathematical models</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Recurrent neural networks</subject><issn>1432-0770</issn><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AU8FL16qk7Rp2qMs_gPBy3oOaZpK1zZZJwnitzelguLBw_Bm4PeGxyPknMIVBRDXHqBkLId5oCnqnB-QFS2LdAoBh7_2Y3Li_Q4SxXizItuN64bJWD84m7Nsr1BNJhjM_F5pk_mAUYeIJnN9pp0Ng40u-jwkT4ZGR0RjQ2ZNRDUmCR8O3_wpOerV6M3Zt67Jy93tdvOQPz3fP25unnJdcBZyVhS6Ey2DshG8rRRjgncMoFdtU_GSdnVLe1FCy2rdV9rQlLhTGgQYBlVbF2tyufzdo3uPxgc5DV6bcVTWpJSSVaIWJQXeJPTiD7pzEW1Kl6i6aWqoakgUWyiNzns0vdzjMCn8lBTkXLRcipYwz1y05MlULCafYPtq8Of1P64v4jmApA</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Beer, Randall D.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7279-3028</orcidid></search><sort><creationdate>20220801</creationdate><title>Codimension-2 parameter space structure of continuous-time recurrent neural networks</title><author>Beer, Randall D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-233cd7b204975b6a2275d200fab96541d8b1f740b28cf6ce1259dac070e206b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bifurcations</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Chaos theory</topic><topic>Circuits</topic><topic>Complex Systems</topic><topic>Computational neuroscience</topic><topic>Computer Appl. in Life Sciences</topic><topic>Manifolds</topic><topic>Mathematical models</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Recurrent neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beer, Randall D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beer, Randall D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Codimension-2 parameter space structure of continuous-time recurrent neural networks</atitle><jtitle>Biological cybernetics</jtitle><stitle>Biol Cybern</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>116</volume><issue>4</issue><spage>501</spage><epage>515</epage><pages>501-515</pages><issn>1432-0770</issn><issn>0340-1200</issn><eissn>1432-0770</eissn><abstract>If we are ever to move beyond the study of isolated special cases in theoretical neuroscience, we need to develop more general theories of neural circuits over a given neural model. The present paper considers this challenge in the context of continuous-time recurrent neural networks (CTRNNs), a simple but dynamically universal model that has been widely utilized in both computational neuroscience and neural networks. Here, we extend previous work on the parameter space structure of codimension-1 local bifurcations in CTRNNs to include codimension-2 local bifurcation manifolds. Specifically, we derive the necessary conditions for all generic local codimension-2 bifurcations for general CTRNNs, specialize these conditions to circuits containing from one to four neurons, illustrate in full detail the application of these conditions to example circuits, derive closed-form expressions for these bifurcation manifolds where possible, and demonstrate how this analysis allows us to find and trace several global codimension-1 bifurcation manifolds that originate from the codimension-2 bifurcations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00422-022-00938-5</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7279-3028</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-0770
ispartof Biological cybernetics, 2022-08, Vol.116 (4), p.501-515
issn 1432-0770
0340-1200
1432-0770
language eng
recordid cdi_proquest_miscellaneous_2678741059
source SpringerLink Journals - AutoHoldings
subjects Bifurcations
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Chaos theory
Circuits
Complex Systems
Computational neuroscience
Computer Appl. in Life Sciences
Manifolds
Mathematical models
Nervous system
Neural networks
Neurobiology
Neurosciences
Original Article
Parameters
Recurrent neural networks
title Codimension-2 parameter space structure of continuous-time recurrent neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A40%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Codimension-2%20parameter%20space%20structure%20of%20continuous-time%20recurrent%20neural%20networks&rft.jtitle=Biological%20cybernetics&rft.au=Beer,%20Randall%20D.&rft.date=2022-08-01&rft.volume=116&rft.issue=4&rft.spage=501&rft.epage=515&rft.pages=501-515&rft.issn=1432-0770&rft.eissn=1432-0770&rft_id=info:doi/10.1007/s00422-022-00938-5&rft_dat=%3Cproquest_cross%3E2689980680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689980680&rft_id=info:pmid/&rfr_iscdi=true