Multivariate linear mixed models with censored and nonignorable missing outcomes, with application to AIDS studies

The analysis of multivariate longitudinal data could encounter some complications due to censorship induced by detection limits of the assay and nonresponse occurring when participants missed scheduled visits intermittently or discontinued participation. This paper establishes a generalization of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2022-10, Vol.64 (7), p.1325-1339
Hauptverfasser: Lin, Tsung‐I, Wang, Wan‐Lun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1339
container_issue 7
container_start_page 1325
container_title Biometrical journal
container_volume 64
creator Lin, Tsung‐I
Wang, Wan‐Lun
description The analysis of multivariate longitudinal data could encounter some complications due to censorship induced by detection limits of the assay and nonresponse occurring when participants missed scheduled visits intermittently or discontinued participation. This paper establishes a generalization of the multivariate linear mixed model that can accommodate censored responses and nonignorable missing outcomes simultaneously. To account for the nonignorable missingness, the selection approach which decomposes the joint distribution as a marginal distribution for the primary outcome variables and a model describing the missing process conditional on the hypothetical complete data is used. A computationally feasible Monte Carlo expectation conditional maximization algorithm is developed for parameter estimation with the maximum likelihood (ML) method. Furthermore, a general information‐based approach is presented to assess the variability of ML estimators. The techniques for the prediction of censored responses and imputation of missing outcomes are also discussed. The methodology is motivated and exemplified by a real dataset concerning HIV‐AIDS clinical trials. A simulation study is conducted to examine the performance of the proposed method compared with other traditional approaches.
doi_str_mv 10.1002/bimj.202100233
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2678739514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725175390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3454-4d904e542c6b8a97f868d3d8a5fad70bf2dfdc9529ca55e4061d55fbd248f5a53</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhS0EEqWwMltiYSDF8SOPsZRXUSsGYLYc2ymuHLvYCaX_nlRBDCxMV_fqO1dH5wBwnqJJihC-rkyznmCE9wshB2CUMpwmFJHsEIwQwSQhBc2PwUmMa4RQiSgegbDsbGs-RTCi1dAap0WAjfnSCjZeaRvh1rTvUGoXfeiPwinovDMr54OorO7ZGI1bQd-10jc6Xg0CsdlYI0VrvIOth9P57QuMbaeMjqfgqBY26rOfOQZv93evs8dk8fwwn00XiSSU0YSq3qFmFMusKkSZ10VWKKIKwWqhclTVWNVKlgyXUjCmKcpSxVhdKUyLmglGxuBy-LsJ_qPTseW9V6mtFU77LnKc5UVOSpbSHr34g659F1zvjuMcszRnpEQ9NRkoGXyMQdd8E0wjwo6niO9T5_sK-G8FvYAOgq2xevcPzW_myydMMkq-AZywizs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725175390</pqid></control><display><type>article</type><title>Multivariate linear mixed models with censored and nonignorable missing outcomes, with application to AIDS studies</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lin, Tsung‐I ; Wang, Wan‐Lun</creator><creatorcontrib>Lin, Tsung‐I ; Wang, Wan‐Lun</creatorcontrib><description>The analysis of multivariate longitudinal data could encounter some complications due to censorship induced by detection limits of the assay and nonresponse occurring when participants missed scheduled visits intermittently or discontinued participation. This paper establishes a generalization of the multivariate linear mixed model that can accommodate censored responses and nonignorable missing outcomes simultaneously. To account for the nonignorable missingness, the selection approach which decomposes the joint distribution as a marginal distribution for the primary outcome variables and a model describing the missing process conditional on the hypothetical complete data is used. A computationally feasible Monte Carlo expectation conditional maximization algorithm is developed for parameter estimation with the maximum likelihood (ML) method. Furthermore, a general information‐based approach is presented to assess the variability of ML estimators. The techniques for the prediction of censored responses and imputation of missing outcomes are also discussed. The methodology is motivated and exemplified by a real dataset concerning HIV‐AIDS clinical trials. A simulation study is conducted to examine the performance of the proposed method compared with other traditional approaches.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.202100233</identifier><language>eng</language><publisher>Weinheim: Wiley - VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Acquired immune deficiency syndrome ; AIDS ; Algorithms ; Clinical trials ; Detection limits ; HIV ; Human immunodeficiency virus ; Maximum likelihood estimation ; missing not at random ; Monte Carlo expectation conditional maximization algorithm ; multiple trajectories ; Multivariate analysis ; Parameter estimation ; selection approach ; truncated multivariate Gaussian distribution</subject><ispartof>Biometrical journal, 2022-10, Vol.64 (7), p.1325-1339</ispartof><rights>2022 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3454-4d904e542c6b8a97f868d3d8a5fad70bf2dfdc9529ca55e4061d55fbd248f5a53</citedby><cites>FETCH-LOGICAL-c3454-4d904e542c6b8a97f868d3d8a5fad70bf2dfdc9529ca55e4061d55fbd248f5a53</cites><orcidid>0000-0002-0344-7954 ; 0000-0002-3992-1128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.202100233$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.202100233$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Lin, Tsung‐I</creatorcontrib><creatorcontrib>Wang, Wan‐Lun</creatorcontrib><title>Multivariate linear mixed models with censored and nonignorable missing outcomes, with application to AIDS studies</title><title>Biometrical journal</title><description>The analysis of multivariate longitudinal data could encounter some complications due to censorship induced by detection limits of the assay and nonresponse occurring when participants missed scheduled visits intermittently or discontinued participation. This paper establishes a generalization of the multivariate linear mixed model that can accommodate censored responses and nonignorable missing outcomes simultaneously. To account for the nonignorable missingness, the selection approach which decomposes the joint distribution as a marginal distribution for the primary outcome variables and a model describing the missing process conditional on the hypothetical complete data is used. A computationally feasible Monte Carlo expectation conditional maximization algorithm is developed for parameter estimation with the maximum likelihood (ML) method. Furthermore, a general information‐based approach is presented to assess the variability of ML estimators. The techniques for the prediction of censored responses and imputation of missing outcomes are also discussed. The methodology is motivated and exemplified by a real dataset concerning HIV‐AIDS clinical trials. A simulation study is conducted to examine the performance of the proposed method compared with other traditional approaches.</description><subject>Acquired immune deficiency syndrome</subject><subject>AIDS</subject><subject>Algorithms</subject><subject>Clinical trials</subject><subject>Detection limits</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Maximum likelihood estimation</subject><subject>missing not at random</subject><subject>Monte Carlo expectation conditional maximization algorithm</subject><subject>multiple trajectories</subject><subject>Multivariate analysis</subject><subject>Parameter estimation</subject><subject>selection approach</subject><subject>truncated multivariate Gaussian distribution</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPwzAUhS0EEqWwMltiYSDF8SOPsZRXUSsGYLYc2ymuHLvYCaX_nlRBDCxMV_fqO1dH5wBwnqJJihC-rkyznmCE9wshB2CUMpwmFJHsEIwQwSQhBc2PwUmMa4RQiSgegbDsbGs-RTCi1dAap0WAjfnSCjZeaRvh1rTvUGoXfeiPwinovDMr54OorO7ZGI1bQd-10jc6Xg0CsdlYI0VrvIOth9P57QuMbaeMjqfgqBY26rOfOQZv93evs8dk8fwwn00XiSSU0YSq3qFmFMusKkSZ10VWKKIKwWqhclTVWNVKlgyXUjCmKcpSxVhdKUyLmglGxuBy-LsJ_qPTseW9V6mtFU77LnKc5UVOSpbSHr34g659F1zvjuMcszRnpEQ9NRkoGXyMQdd8E0wjwo6niO9T5_sK-G8FvYAOgq2xevcPzW_myydMMkq-AZywizs</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Lin, Tsung‐I</creator><creator>Wang, Wan‐Lun</creator><general>Wiley - VCH Verlag GmbH &amp; Co. KGaA</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0344-7954</orcidid><orcidid>https://orcid.org/0000-0002-3992-1128</orcidid></search><sort><creationdate>202210</creationdate><title>Multivariate linear mixed models with censored and nonignorable missing outcomes, with application to AIDS studies</title><author>Lin, Tsung‐I ; Wang, Wan‐Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3454-4d904e542c6b8a97f868d3d8a5fad70bf2dfdc9529ca55e4061d55fbd248f5a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acquired immune deficiency syndrome</topic><topic>AIDS</topic><topic>Algorithms</topic><topic>Clinical trials</topic><topic>Detection limits</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Maximum likelihood estimation</topic><topic>missing not at random</topic><topic>Monte Carlo expectation conditional maximization algorithm</topic><topic>multiple trajectories</topic><topic>Multivariate analysis</topic><topic>Parameter estimation</topic><topic>selection approach</topic><topic>truncated multivariate Gaussian distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Tsung‐I</creatorcontrib><creatorcontrib>Wang, Wan‐Lun</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Tsung‐I</au><au>Wang, Wan‐Lun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate linear mixed models with censored and nonignorable missing outcomes, with application to AIDS studies</atitle><jtitle>Biometrical journal</jtitle><date>2022-10</date><risdate>2022</risdate><volume>64</volume><issue>7</issue><spage>1325</spage><epage>1339</epage><pages>1325-1339</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>The analysis of multivariate longitudinal data could encounter some complications due to censorship induced by detection limits of the assay and nonresponse occurring when participants missed scheduled visits intermittently or discontinued participation. This paper establishes a generalization of the multivariate linear mixed model that can accommodate censored responses and nonignorable missing outcomes simultaneously. To account for the nonignorable missingness, the selection approach which decomposes the joint distribution as a marginal distribution for the primary outcome variables and a model describing the missing process conditional on the hypothetical complete data is used. A computationally feasible Monte Carlo expectation conditional maximization algorithm is developed for parameter estimation with the maximum likelihood (ML) method. Furthermore, a general information‐based approach is presented to assess the variability of ML estimators. The techniques for the prediction of censored responses and imputation of missing outcomes are also discussed. The methodology is motivated and exemplified by a real dataset concerning HIV‐AIDS clinical trials. A simulation study is conducted to examine the performance of the proposed method compared with other traditional approaches.</abstract><cop>Weinheim</cop><pub>Wiley - VCH Verlag GmbH &amp; Co. KGaA</pub><doi>10.1002/bimj.202100233</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0344-7954</orcidid><orcidid>https://orcid.org/0000-0002-3992-1128</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2022-10, Vol.64 (7), p.1325-1339
issn 0323-3847
1521-4036
language eng
recordid cdi_proquest_miscellaneous_2678739514
source Wiley Online Library Journals Frontfile Complete
subjects Acquired immune deficiency syndrome
AIDS
Algorithms
Clinical trials
Detection limits
HIV
Human immunodeficiency virus
Maximum likelihood estimation
missing not at random
Monte Carlo expectation conditional maximization algorithm
multiple trajectories
Multivariate analysis
Parameter estimation
selection approach
truncated multivariate Gaussian distribution
title Multivariate linear mixed models with censored and nonignorable missing outcomes, with application to AIDS studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20linear%20mixed%20models%20with%20censored%20and%20nonignorable%20missing%20outcomes,%20with%20application%20to%20AIDS%20studies&rft.jtitle=Biometrical%20journal&rft.au=Lin,%20Tsung%E2%80%90I&rft.date=2022-10&rft.volume=64&rft.issue=7&rft.spage=1325&rft.epage=1339&rft.pages=1325-1339&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.202100233&rft_dat=%3Cproquest_cross%3E2725175390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725175390&rft_id=info:pmid/&rfr_iscdi=true