Multivariate linear mixed models with censored and nonignorable missing outcomes, with application to AIDS studies
The analysis of multivariate longitudinal data could encounter some complications due to censorship induced by detection limits of the assay and nonresponse occurring when participants missed scheduled visits intermittently or discontinued participation. This paper establishes a generalization of th...
Gespeichert in:
Veröffentlicht in: | Biometrical journal 2022-10, Vol.64 (7), p.1325-1339 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1339 |
---|---|
container_issue | 7 |
container_start_page | 1325 |
container_title | Biometrical journal |
container_volume | 64 |
creator | Lin, Tsung‐I Wang, Wan‐Lun |
description | The analysis of multivariate longitudinal data could encounter some complications due to censorship induced by detection limits of the assay and nonresponse occurring when participants missed scheduled visits intermittently or discontinued participation. This paper establishes a generalization of the multivariate linear mixed model that can accommodate censored responses and nonignorable missing outcomes simultaneously. To account for the nonignorable missingness, the selection approach which decomposes the joint distribution as a marginal distribution for the primary outcome variables and a model describing the missing process conditional on the hypothetical complete data is used. A computationally feasible Monte Carlo expectation conditional maximization algorithm is developed for parameter estimation with the maximum likelihood (ML) method. Furthermore, a general information‐based approach is presented to assess the variability of ML estimators. The techniques for the prediction of censored responses and imputation of missing outcomes are also discussed. The methodology is motivated and exemplified by a real dataset concerning HIV‐AIDS clinical trials. A simulation study is conducted to examine the performance of the proposed method compared with other traditional approaches. |
doi_str_mv | 10.1002/bimj.202100233 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2678739514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2725175390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3454-4d904e542c6b8a97f868d3d8a5fad70bf2dfdc9529ca55e4061d55fbd248f5a53</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhS0EEqWwMltiYSDF8SOPsZRXUSsGYLYc2ymuHLvYCaX_nlRBDCxMV_fqO1dH5wBwnqJJihC-rkyznmCE9wshB2CUMpwmFJHsEIwQwSQhBc2PwUmMa4RQiSgegbDsbGs-RTCi1dAap0WAjfnSCjZeaRvh1rTvUGoXfeiPwinovDMr54OorO7ZGI1bQd-10jc6Xg0CsdlYI0VrvIOth9P57QuMbaeMjqfgqBY26rOfOQZv93evs8dk8fwwn00XiSSU0YSq3qFmFMusKkSZ10VWKKIKwWqhclTVWNVKlgyXUjCmKcpSxVhdKUyLmglGxuBy-LsJ_qPTseW9V6mtFU77LnKc5UVOSpbSHr34g659F1zvjuMcszRnpEQ9NRkoGXyMQdd8E0wjwo6niO9T5_sK-G8FvYAOgq2xevcPzW_myydMMkq-AZywizs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2725175390</pqid></control><display><type>article</type><title>Multivariate linear mixed models with censored and nonignorable missing outcomes, with application to AIDS studies</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lin, Tsung‐I ; Wang, Wan‐Lun</creator><creatorcontrib>Lin, Tsung‐I ; Wang, Wan‐Lun</creatorcontrib><description>The analysis of multivariate longitudinal data could encounter some complications due to censorship induced by detection limits of the assay and nonresponse occurring when participants missed scheduled visits intermittently or discontinued participation. This paper establishes a generalization of the multivariate linear mixed model that can accommodate censored responses and nonignorable missing outcomes simultaneously. To account for the nonignorable missingness, the selection approach which decomposes the joint distribution as a marginal distribution for the primary outcome variables and a model describing the missing process conditional on the hypothetical complete data is used. A computationally feasible Monte Carlo expectation conditional maximization algorithm is developed for parameter estimation with the maximum likelihood (ML) method. Furthermore, a general information‐based approach is presented to assess the variability of ML estimators. The techniques for the prediction of censored responses and imputation of missing outcomes are also discussed. The methodology is motivated and exemplified by a real dataset concerning HIV‐AIDS clinical trials. A simulation study is conducted to examine the performance of the proposed method compared with other traditional approaches.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.202100233</identifier><language>eng</language><publisher>Weinheim: Wiley - VCH Verlag GmbH & Co. KGaA</publisher><subject>Acquired immune deficiency syndrome ; AIDS ; Algorithms ; Clinical trials ; Detection limits ; HIV ; Human immunodeficiency virus ; Maximum likelihood estimation ; missing not at random ; Monte Carlo expectation conditional maximization algorithm ; multiple trajectories ; Multivariate analysis ; Parameter estimation ; selection approach ; truncated multivariate Gaussian distribution</subject><ispartof>Biometrical journal, 2022-10, Vol.64 (7), p.1325-1339</ispartof><rights>2022 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3454-4d904e542c6b8a97f868d3d8a5fad70bf2dfdc9529ca55e4061d55fbd248f5a53</citedby><cites>FETCH-LOGICAL-c3454-4d904e542c6b8a97f868d3d8a5fad70bf2dfdc9529ca55e4061d55fbd248f5a53</cites><orcidid>0000-0002-0344-7954 ; 0000-0002-3992-1128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.202100233$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.202100233$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Lin, Tsung‐I</creatorcontrib><creatorcontrib>Wang, Wan‐Lun</creatorcontrib><title>Multivariate linear mixed models with censored and nonignorable missing outcomes, with application to AIDS studies</title><title>Biometrical journal</title><description>The analysis of multivariate longitudinal data could encounter some complications due to censorship induced by detection limits of the assay and nonresponse occurring when participants missed scheduled visits intermittently or discontinued participation. This paper establishes a generalization of the multivariate linear mixed model that can accommodate censored responses and nonignorable missing outcomes simultaneously. To account for the nonignorable missingness, the selection approach which decomposes the joint distribution as a marginal distribution for the primary outcome variables and a model describing the missing process conditional on the hypothetical complete data is used. A computationally feasible Monte Carlo expectation conditional maximization algorithm is developed for parameter estimation with the maximum likelihood (ML) method. Furthermore, a general information‐based approach is presented to assess the variability of ML estimators. The techniques for the prediction of censored responses and imputation of missing outcomes are also discussed. The methodology is motivated and exemplified by a real dataset concerning HIV‐AIDS clinical trials. A simulation study is conducted to examine the performance of the proposed method compared with other traditional approaches.</description><subject>Acquired immune deficiency syndrome</subject><subject>AIDS</subject><subject>Algorithms</subject><subject>Clinical trials</subject><subject>Detection limits</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Maximum likelihood estimation</subject><subject>missing not at random</subject><subject>Monte Carlo expectation conditional maximization algorithm</subject><subject>multiple trajectories</subject><subject>Multivariate analysis</subject><subject>Parameter estimation</subject><subject>selection approach</subject><subject>truncated multivariate Gaussian distribution</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPwzAUhS0EEqWwMltiYSDF8SOPsZRXUSsGYLYc2ymuHLvYCaX_nlRBDCxMV_fqO1dH5wBwnqJJihC-rkyznmCE9wshB2CUMpwmFJHsEIwQwSQhBc2PwUmMa4RQiSgegbDsbGs-RTCi1dAap0WAjfnSCjZeaRvh1rTvUGoXfeiPwinovDMr54OorO7ZGI1bQd-10jc6Xg0CsdlYI0VrvIOth9P57QuMbaeMjqfgqBY26rOfOQZv93evs8dk8fwwn00XiSSU0YSq3qFmFMusKkSZ10VWKKIKwWqhclTVWNVKlgyXUjCmKcpSxVhdKUyLmglGxuBy-LsJ_qPTseW9V6mtFU77LnKc5UVOSpbSHr34g659F1zvjuMcszRnpEQ9NRkoGXyMQdd8E0wjwo6niO9T5_sK-G8FvYAOgq2xevcPzW_myydMMkq-AZywizs</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Lin, Tsung‐I</creator><creator>Wang, Wan‐Lun</creator><general>Wiley - VCH Verlag GmbH & Co. KGaA</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0344-7954</orcidid><orcidid>https://orcid.org/0000-0002-3992-1128</orcidid></search><sort><creationdate>202210</creationdate><title>Multivariate linear mixed models with censored and nonignorable missing outcomes, with application to AIDS studies</title><author>Lin, Tsung‐I ; Wang, Wan‐Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3454-4d904e542c6b8a97f868d3d8a5fad70bf2dfdc9529ca55e4061d55fbd248f5a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acquired immune deficiency syndrome</topic><topic>AIDS</topic><topic>Algorithms</topic><topic>Clinical trials</topic><topic>Detection limits</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Maximum likelihood estimation</topic><topic>missing not at random</topic><topic>Monte Carlo expectation conditional maximization algorithm</topic><topic>multiple trajectories</topic><topic>Multivariate analysis</topic><topic>Parameter estimation</topic><topic>selection approach</topic><topic>truncated multivariate Gaussian distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Tsung‐I</creatorcontrib><creatorcontrib>Wang, Wan‐Lun</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Tsung‐I</au><au>Wang, Wan‐Lun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate linear mixed models with censored and nonignorable missing outcomes, with application to AIDS studies</atitle><jtitle>Biometrical journal</jtitle><date>2022-10</date><risdate>2022</risdate><volume>64</volume><issue>7</issue><spage>1325</spage><epage>1339</epage><pages>1325-1339</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>The analysis of multivariate longitudinal data could encounter some complications due to censorship induced by detection limits of the assay and nonresponse occurring when participants missed scheduled visits intermittently or discontinued participation. This paper establishes a generalization of the multivariate linear mixed model that can accommodate censored responses and nonignorable missing outcomes simultaneously. To account for the nonignorable missingness, the selection approach which decomposes the joint distribution as a marginal distribution for the primary outcome variables and a model describing the missing process conditional on the hypothetical complete data is used. A computationally feasible Monte Carlo expectation conditional maximization algorithm is developed for parameter estimation with the maximum likelihood (ML) method. Furthermore, a general information‐based approach is presented to assess the variability of ML estimators. The techniques for the prediction of censored responses and imputation of missing outcomes are also discussed. The methodology is motivated and exemplified by a real dataset concerning HIV‐AIDS clinical trials. A simulation study is conducted to examine the performance of the proposed method compared with other traditional approaches.</abstract><cop>Weinheim</cop><pub>Wiley - VCH Verlag GmbH & Co. KGaA</pub><doi>10.1002/bimj.202100233</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0344-7954</orcidid><orcidid>https://orcid.org/0000-0002-3992-1128</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0323-3847 |
ispartof | Biometrical journal, 2022-10, Vol.64 (7), p.1325-1339 |
issn | 0323-3847 1521-4036 |
language | eng |
recordid | cdi_proquest_miscellaneous_2678739514 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acquired immune deficiency syndrome AIDS Algorithms Clinical trials Detection limits HIV Human immunodeficiency virus Maximum likelihood estimation missing not at random Monte Carlo expectation conditional maximization algorithm multiple trajectories Multivariate analysis Parameter estimation selection approach truncated multivariate Gaussian distribution |
title | Multivariate linear mixed models with censored and nonignorable missing outcomes, with application to AIDS studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20linear%20mixed%20models%20with%20censored%20and%20nonignorable%20missing%20outcomes,%20with%20application%20to%20AIDS%20studies&rft.jtitle=Biometrical%20journal&rft.au=Lin,%20Tsung%E2%80%90I&rft.date=2022-10&rft.volume=64&rft.issue=7&rft.spage=1325&rft.epage=1339&rft.pages=1325-1339&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.202100233&rft_dat=%3Cproquest_cross%3E2725175390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2725175390&rft_id=info:pmid/&rfr_iscdi=true |