Modeling of Gas−Liquid Mass-Transfer Limitations in Slurry Olefin Polymerization

A model of gas to liquid mass transfer in a stirred laboratory reactor was developed with the purpose of controlling mass-transfer limitations in kinetic studies of olefin polymerizations. Renewing the liquid surface is controlling the mass transfer. Generally, two different scales of eddies can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2001-02, Vol.40 (4), p.1090-1096
Hauptverfasser: Kittilsen, Pål, Tøgersen, Rune, Rytter, Erling, Svendsen, Hallvard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1096
container_issue 4
container_start_page 1090
container_title Industrial & engineering chemistry research
container_volume 40
creator Kittilsen, Pål
Tøgersen, Rune
Rytter, Erling
Svendsen, Hallvard
description A model of gas to liquid mass transfer in a stirred laboratory reactor was developed with the purpose of controlling mass-transfer limitations in kinetic studies of olefin polymerizations. Renewing the liquid surface is controlling the mass transfer. Generally, two different scales of eddies can be envisaged to be responsible for the renewal:  at low stirring rates, the mean liquid flow is the controlling mechanism; at high stirring rates, small-scale turbulence provides the renewal. The change is at a specified turbulent Reynolds number. The model for the high Reynolds number region is based on an established mass-transfer relationship from the literature. For low Reynolds numbers, a new correlation is developed based on literature studies of the liquid circulation velocity at the gas−liquid interface. The model predictions are compared with experimental data for propene polymerization in decane. It was found that the small-scale turbulence model was most appropriate, and fitted the data within a factor 2. The models are theoretically founded and form a basis for the control of mass-transfer effects in the measurements of kinetic data.
doi_str_mv 10.1021/ie000578h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26786301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26786301</sourcerecordid><originalsourceid>FETCH-LOGICAL-a356t-fbf0c6de43f402639827db09fffe55b3b3b6311a087cea49117d05aa8de99b113</originalsourceid><addsrcrecordid>eNptkM9Kw0AQxhdRsFYPvkFAFDxEd5PsZnMUsVVMabEVvC2bZFe35k-7k4D1CTz7iD6JiSk9yRyGYX7zzcyH0CnBVwR75NoojDEN-dseGhDqYZfigO6jAeacu5RzeoiOAJYdRINggJ4mVaZyU746lXbGEn6-vmOzbkzmTCSAu7CyBK2sE5vC1LI2VQmOKZ153li7caa50m01q_JNoaz5_AOO0YGWOaiTbR6i59Hd4vbejafjh9ub2JU-ZbWrE41TlqnA1wH2mB9xL8wSHGmtFaWJ3wbzCZGYh6mSQURImGEqJc9UFCWE-EN00euubLVuFNSiMJCqPJelqhoQHgs583EHXvZgaisAq7RYWVNIuxEEi841sXOtZc-2ohJSmev2_9TAboDzzsiWcnvKQK0-dl1p3wUL_ZCKxWwuWDB6DF_mTHQXnPe8TEEsq8aWrTH_bP8Fq0iIXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26786301</pqid></control><display><type>article</type><title>Modeling of Gas−Liquid Mass-Transfer Limitations in Slurry Olefin Polymerization</title><source>ACS Publications</source><creator>Kittilsen, Pål ; Tøgersen, Rune ; Rytter, Erling ; Svendsen, Hallvard</creator><creatorcontrib>Kittilsen, Pål ; Tøgersen, Rune ; Rytter, Erling ; Svendsen, Hallvard</creatorcontrib><description>A model of gas to liquid mass transfer in a stirred laboratory reactor was developed with the purpose of controlling mass-transfer limitations in kinetic studies of olefin polymerizations. Renewing the liquid surface is controlling the mass transfer. Generally, two different scales of eddies can be envisaged to be responsible for the renewal:  at low stirring rates, the mean liquid flow is the controlling mechanism; at high stirring rates, small-scale turbulence provides the renewal. The change is at a specified turbulent Reynolds number. The model for the high Reynolds number region is based on an established mass-transfer relationship from the literature. For low Reynolds numbers, a new correlation is developed based on literature studies of the liquid circulation velocity at the gas−liquid interface. The model predictions are compared with experimental data for propene polymerization in decane. It was found that the small-scale turbulence model was most appropriate, and fitted the data within a factor 2. The models are theoretically founded and form a basis for the control of mass-transfer effects in the measurements of kinetic data.</description><identifier>ISSN: 0888-5885</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie000578h</identifier><identifier>CODEN: IECRED</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Exact sciences and technology ; Organic polymers ; Physicochemistry of polymers ; Polymerization ; Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><ispartof>Industrial &amp; engineering chemistry research, 2001-02, Vol.40 (4), p.1090-1096</ispartof><rights>Copyright © 2001 American Chemical Society</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a356t-fbf0c6de43f402639827db09fffe55b3b3b6311a087cea49117d05aa8de99b113</citedby><cites>FETCH-LOGICAL-a356t-fbf0c6de43f402639827db09fffe55b3b3b6311a087cea49117d05aa8de99b113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie000578h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie000578h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=880888$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kittilsen, Pål</creatorcontrib><creatorcontrib>Tøgersen, Rune</creatorcontrib><creatorcontrib>Rytter, Erling</creatorcontrib><creatorcontrib>Svendsen, Hallvard</creatorcontrib><title>Modeling of Gas−Liquid Mass-Transfer Limitations in Slurry Olefin Polymerization</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>A model of gas to liquid mass transfer in a stirred laboratory reactor was developed with the purpose of controlling mass-transfer limitations in kinetic studies of olefin polymerizations. Renewing the liquid surface is controlling the mass transfer. Generally, two different scales of eddies can be envisaged to be responsible for the renewal:  at low stirring rates, the mean liquid flow is the controlling mechanism; at high stirring rates, small-scale turbulence provides the renewal. The change is at a specified turbulent Reynolds number. The model for the high Reynolds number region is based on an established mass-transfer relationship from the literature. For low Reynolds numbers, a new correlation is developed based on literature studies of the liquid circulation velocity at the gas−liquid interface. The model predictions are compared with experimental data for propene polymerization in decane. It was found that the small-scale turbulence model was most appropriate, and fitted the data within a factor 2. The models are theoretically founded and form a basis for the control of mass-transfer effects in the measurements of kinetic data.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymerization</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><issn>0888-5885</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNptkM9Kw0AQxhdRsFYPvkFAFDxEd5PsZnMUsVVMabEVvC2bZFe35k-7k4D1CTz7iD6JiSk9yRyGYX7zzcyH0CnBVwR75NoojDEN-dseGhDqYZfigO6jAeacu5RzeoiOAJYdRINggJ4mVaZyU746lXbGEn6-vmOzbkzmTCSAu7CyBK2sE5vC1LI2VQmOKZ153li7caa50m01q_JNoaz5_AOO0YGWOaiTbR6i59Hd4vbejafjh9ub2JU-ZbWrE41TlqnA1wH2mB9xL8wSHGmtFaWJ3wbzCZGYh6mSQURImGEqJc9UFCWE-EN00euubLVuFNSiMJCqPJelqhoQHgs583EHXvZgaisAq7RYWVNIuxEEi841sXOtZc-2ohJSmev2_9TAboDzzsiWcnvKQK0-dl1p3wUL_ZCKxWwuWDB6DF_mTHQXnPe8TEEsq8aWrTH_bP8Fq0iIXg</recordid><startdate>20010221</startdate><enddate>20010221</enddate><creator>Kittilsen, Pål</creator><creator>Tøgersen, Rune</creator><creator>Rytter, Erling</creator><creator>Svendsen, Hallvard</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20010221</creationdate><title>Modeling of Gas−Liquid Mass-Transfer Limitations in Slurry Olefin Polymerization</title><author>Kittilsen, Pål ; Tøgersen, Rune ; Rytter, Erling ; Svendsen, Hallvard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a356t-fbf0c6de43f402639827db09fffe55b3b3b6311a087cea49117d05aa8de99b113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymerization</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kittilsen, Pål</creatorcontrib><creatorcontrib>Tøgersen, Rune</creatorcontrib><creatorcontrib>Rytter, Erling</creatorcontrib><creatorcontrib>Svendsen, Hallvard</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kittilsen, Pål</au><au>Tøgersen, Rune</au><au>Rytter, Erling</au><au>Svendsen, Hallvard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Gas−Liquid Mass-Transfer Limitations in Slurry Olefin Polymerization</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2001-02-21</date><risdate>2001</risdate><volume>40</volume><issue>4</issue><spage>1090</spage><epage>1096</epage><pages>1090-1096</pages><issn>0888-5885</issn><eissn>1520-5045</eissn><coden>IECRED</coden><abstract>A model of gas to liquid mass transfer in a stirred laboratory reactor was developed with the purpose of controlling mass-transfer limitations in kinetic studies of olefin polymerizations. Renewing the liquid surface is controlling the mass transfer. Generally, two different scales of eddies can be envisaged to be responsible for the renewal:  at low stirring rates, the mean liquid flow is the controlling mechanism; at high stirring rates, small-scale turbulence provides the renewal. The change is at a specified turbulent Reynolds number. The model for the high Reynolds number region is based on an established mass-transfer relationship from the literature. For low Reynolds numbers, a new correlation is developed based on literature studies of the liquid circulation velocity at the gas−liquid interface. The model predictions are compared with experimental data for propene polymerization in decane. It was found that the small-scale turbulence model was most appropriate, and fitted the data within a factor 2. The models are theoretically founded and form a basis for the control of mass-transfer effects in the measurements of kinetic data.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><doi>10.1021/ie000578h</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2001-02, Vol.40 (4), p.1090-1096
issn 0888-5885
1520-5045
language eng
recordid cdi_proquest_miscellaneous_26786301
source ACS Publications
subjects Applied sciences
Exact sciences and technology
Organic polymers
Physicochemistry of polymers
Polymerization
Preparation, kinetics, thermodynamics, mechanism and catalysts
title Modeling of Gas−Liquid Mass-Transfer Limitations in Slurry Olefin Polymerization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Gas%E2%88%92Liquid%20Mass-Transfer%20Limitations%20in%20Slurry%20Olefin%20Polymerization&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Kittilsen,%20P%C3%A5l&rft.date=2001-02-21&rft.volume=40&rft.issue=4&rft.spage=1090&rft.epage=1096&rft.pages=1090-1096&rft.issn=0888-5885&rft.eissn=1520-5045&rft.coden=IECRED&rft_id=info:doi/10.1021/ie000578h&rft_dat=%3Cproquest_cross%3E26786301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26786301&rft_id=info:pmid/&rfr_iscdi=true