Biogas production from residual marine macroalgae biomass: Kinetic modelling approach
[Display omitted] •Low-solids anaerobic digestion of marine macroalgae waste was conducted.•Pseudo-first-order, logistics, modified, double and multi-Gompertz models were used.•All models fit the experimental data with R2 > 0.988.•Multi-Gompertz fitting showed the highest R2 and the lowest RMSE a...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2022-09, Vol.359, p.127473-127473, Article 127473 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127473 |
---|---|
container_issue | |
container_start_page | 127473 |
container_title | Bioresource technology |
container_volume | 359 |
creator | Pardilhó, Sara Pires, José C. Boaventura, Rui Almeida, Manuel Maia Dias, Joana |
description | [Display omitted]
•Low-solids anaerobic digestion of marine macroalgae waste was conducted.•Pseudo-first-order, logistics, modified, double and multi-Gompertz models were used.•All models fit the experimental data with R2 > 0.988.•Multi-Gompertz fitting showed the highest R2 and the lowest RMSE and AICc values.
Modelling the conversion of residual biomass to renewable fuels is of high relevance to promote the development of effective technological solutions. The present study compares the performance of five different kinetic models (pseudo-first-order kinetics, logistics, modified Gompertz, double-Gompertz, and multi-Gompertz) to describe the cumulative methane production during a low-solids anaerobic digestion of marine macroalgae waste. Different substrate concentrations were evaluated (0.9, 1.7 and 2.5% TS) with the best methane yield (105.2 mL CH4.g VS−1) being obtained at the highest amount of biomass. All models fitted the experimental data with R2 > 0.988. The innovative multi-Gompertz model herein proposed led to the best performance indexes for all tested experimental conditions, allowing to predict methane yields more accurately when the digestion occurs in two or more steps, as it was the case with marine macroalgae waste. |
doi_str_mv | 10.1016/j.biortech.2022.127473 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2678430707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852422008021</els_id><sourcerecordid>2718257950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-38a66de12179f758ad42c24595be423f5e352f9b5aa416d056e5bbb5c29636583</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwF5CPXBL8iO2EE1DxEpW40LPlOJvWVRIXO0Hi3-OqcO5pDjs7s_shdE1JTgmVt9u8dj6MYDc5I4zllKlC8RM0o6XiGauUPEUzUkmSlYIV5-gixi0hhFPFZmj16PzaRLwLvpns6PyA2-B7HCC6ZjId7k1wAySxwZtubQCntt7EeIff02B0Fve-ga5zwxqbXcoxdnOJzlrTRbj60zlaPT99Ll6z5cfL2-JhmVnOxZjx0kjZAGVUVa0SpWkKZlkhKlFDwXgrgAvWVrUwpqCyIUKCqOtaWFZJLkXJ5-jmkJtqvyaIo-5dtOkYM4CfomaKlkyoSpDjVqnKghNFVLLKgzW9HGOAVu-CSxx-NCV6j1xv9T9yvUeuD8jT4v1hEdLP3w6CjtbBYKFxAeyoG--ORfwC3CyNgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678430707</pqid></control><display><type>article</type><title>Biogas production from residual marine macroalgae biomass: Kinetic modelling approach</title><source>Elsevier ScienceDirect Journals</source><creator>Pardilhó, Sara ; Pires, José C. ; Boaventura, Rui ; Almeida, Manuel ; Maia Dias, Joana</creator><creatorcontrib>Pardilhó, Sara ; Pires, José C. ; Boaventura, Rui ; Almeida, Manuel ; Maia Dias, Joana</creatorcontrib><description>[Display omitted]
•Low-solids anaerobic digestion of marine macroalgae waste was conducted.•Pseudo-first-order, logistics, modified, double and multi-Gompertz models were used.•All models fit the experimental data with R2 > 0.988.•Multi-Gompertz fitting showed the highest R2 and the lowest RMSE and AICc values.
Modelling the conversion of residual biomass to renewable fuels is of high relevance to promote the development of effective technological solutions. The present study compares the performance of five different kinetic models (pseudo-first-order kinetics, logistics, modified Gompertz, double-Gompertz, and multi-Gompertz) to describe the cumulative methane production during a low-solids anaerobic digestion of marine macroalgae waste. Different substrate concentrations were evaluated (0.9, 1.7 and 2.5% TS) with the best methane yield (105.2 mL CH4.g VS−1) being obtained at the highest amount of biomass. All models fitted the experimental data with R2 > 0.988. The innovative multi-Gompertz model herein proposed led to the best performance indexes for all tested experimental conditions, allowing to predict methane yields more accurately when the digestion occurs in two or more steps, as it was the case with marine macroalgae waste.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2022.127473</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anaerobic digestion ; biomass ; gas production (biological) ; macroalgae ; Marine macroalgae waste ; methane ; Methane production ; Predictive models ; wastes</subject><ispartof>Bioresource technology, 2022-09, Vol.359, p.127473-127473, Article 127473</ispartof><rights>2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-38a66de12179f758ad42c24595be423f5e352f9b5aa416d056e5bbb5c29636583</citedby><cites>FETCH-LOGICAL-c335t-38a66de12179f758ad42c24595be423f5e352f9b5aa416d056e5bbb5c29636583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2022.127473$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Pardilhó, Sara</creatorcontrib><creatorcontrib>Pires, José C.</creatorcontrib><creatorcontrib>Boaventura, Rui</creatorcontrib><creatorcontrib>Almeida, Manuel</creatorcontrib><creatorcontrib>Maia Dias, Joana</creatorcontrib><title>Biogas production from residual marine macroalgae biomass: Kinetic modelling approach</title><title>Bioresource technology</title><description>[Display omitted]
•Low-solids anaerobic digestion of marine macroalgae waste was conducted.•Pseudo-first-order, logistics, modified, double and multi-Gompertz models were used.•All models fit the experimental data with R2 > 0.988.•Multi-Gompertz fitting showed the highest R2 and the lowest RMSE and AICc values.
Modelling the conversion of residual biomass to renewable fuels is of high relevance to promote the development of effective technological solutions. The present study compares the performance of five different kinetic models (pseudo-first-order kinetics, logistics, modified Gompertz, double-Gompertz, and multi-Gompertz) to describe the cumulative methane production during a low-solids anaerobic digestion of marine macroalgae waste. Different substrate concentrations were evaluated (0.9, 1.7 and 2.5% TS) with the best methane yield (105.2 mL CH4.g VS−1) being obtained at the highest amount of biomass. All models fitted the experimental data with R2 > 0.988. The innovative multi-Gompertz model herein proposed led to the best performance indexes for all tested experimental conditions, allowing to predict methane yields more accurately when the digestion occurs in two or more steps, as it was the case with marine macroalgae waste.</description><subject>Anaerobic digestion</subject><subject>biomass</subject><subject>gas production (biological)</subject><subject>macroalgae</subject><subject>Marine macroalgae waste</subject><subject>methane</subject><subject>Methane production</subject><subject>Predictive models</subject><subject>wastes</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwF5CPXBL8iO2EE1DxEpW40LPlOJvWVRIXO0Hi3-OqcO5pDjs7s_shdE1JTgmVt9u8dj6MYDc5I4zllKlC8RM0o6XiGauUPEUzUkmSlYIV5-gixi0hhFPFZmj16PzaRLwLvpns6PyA2-B7HCC6ZjId7k1wAySxwZtubQCntt7EeIff02B0Fve-ga5zwxqbXcoxdnOJzlrTRbj60zlaPT99Ll6z5cfL2-JhmVnOxZjx0kjZAGVUVa0SpWkKZlkhKlFDwXgrgAvWVrUwpqCyIUKCqOtaWFZJLkXJ5-jmkJtqvyaIo-5dtOkYM4CfomaKlkyoSpDjVqnKghNFVLLKgzW9HGOAVu-CSxx-NCV6j1xv9T9yvUeuD8jT4v1hEdLP3w6CjtbBYKFxAeyoG--ORfwC3CyNgw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Pardilhó, Sara</creator><creator>Pires, José C.</creator><creator>Boaventura, Rui</creator><creator>Almeida, Manuel</creator><creator>Maia Dias, Joana</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20220901</creationdate><title>Biogas production from residual marine macroalgae biomass: Kinetic modelling approach</title><author>Pardilhó, Sara ; Pires, José C. ; Boaventura, Rui ; Almeida, Manuel ; Maia Dias, Joana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-38a66de12179f758ad42c24595be423f5e352f9b5aa416d056e5bbb5c29636583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anaerobic digestion</topic><topic>biomass</topic><topic>gas production (biological)</topic><topic>macroalgae</topic><topic>Marine macroalgae waste</topic><topic>methane</topic><topic>Methane production</topic><topic>Predictive models</topic><topic>wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pardilhó, Sara</creatorcontrib><creatorcontrib>Pires, José C.</creatorcontrib><creatorcontrib>Boaventura, Rui</creatorcontrib><creatorcontrib>Almeida, Manuel</creatorcontrib><creatorcontrib>Maia Dias, Joana</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pardilhó, Sara</au><au>Pires, José C.</au><au>Boaventura, Rui</au><au>Almeida, Manuel</au><au>Maia Dias, Joana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biogas production from residual marine macroalgae biomass: Kinetic modelling approach</atitle><jtitle>Bioresource technology</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>359</volume><spage>127473</spage><epage>127473</epage><pages>127473-127473</pages><artnum>127473</artnum><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted]
•Low-solids anaerobic digestion of marine macroalgae waste was conducted.•Pseudo-first-order, logistics, modified, double and multi-Gompertz models were used.•All models fit the experimental data with R2 > 0.988.•Multi-Gompertz fitting showed the highest R2 and the lowest RMSE and AICc values.
Modelling the conversion of residual biomass to renewable fuels is of high relevance to promote the development of effective technological solutions. The present study compares the performance of five different kinetic models (pseudo-first-order kinetics, logistics, modified Gompertz, double-Gompertz, and multi-Gompertz) to describe the cumulative methane production during a low-solids anaerobic digestion of marine macroalgae waste. Different substrate concentrations were evaluated (0.9, 1.7 and 2.5% TS) with the best methane yield (105.2 mL CH4.g VS−1) being obtained at the highest amount of biomass. All models fitted the experimental data with R2 > 0.988. The innovative multi-Gompertz model herein proposed led to the best performance indexes for all tested experimental conditions, allowing to predict methane yields more accurately when the digestion occurs in two or more steps, as it was the case with marine macroalgae waste.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.biortech.2022.127473</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2022-09, Vol.359, p.127473-127473, Article 127473 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_2678430707 |
source | Elsevier ScienceDirect Journals |
subjects | Anaerobic digestion biomass gas production (biological) macroalgae Marine macroalgae waste methane Methane production Predictive models wastes |
title | Biogas production from residual marine macroalgae biomass: Kinetic modelling approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biogas%20production%20from%20residual%20marine%20macroalgae%20biomass:%20Kinetic%20modelling%20approach&rft.jtitle=Bioresource%20technology&rft.au=Pardilh%C3%B3,%20Sara&rft.date=2022-09-01&rft.volume=359&rft.spage=127473&rft.epage=127473&rft.pages=127473-127473&rft.artnum=127473&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2022.127473&rft_dat=%3Cproquest_cross%3E2718257950%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678430707&rft_id=info:pmid/&rft_els_id=S0960852422008021&rfr_iscdi=true |