Biogas production from residual marine macroalgae biomass: Kinetic modelling approach

[Display omitted] •Low-solids anaerobic digestion of marine macroalgae waste was conducted.•Pseudo-first-order, logistics, modified, double and multi-Gompertz models were used.•All models fit the experimental data with R2 > 0.988.•Multi-Gompertz fitting showed the highest R2 and the lowest RMSE a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2022-09, Vol.359, p.127473-127473, Article 127473
Hauptverfasser: Pardilhó, Sara, Pires, José C., Boaventura, Rui, Almeida, Manuel, Maia Dias, Joana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127473
container_issue
container_start_page 127473
container_title Bioresource technology
container_volume 359
creator Pardilhó, Sara
Pires, José C.
Boaventura, Rui
Almeida, Manuel
Maia Dias, Joana
description [Display omitted] •Low-solids anaerobic digestion of marine macroalgae waste was conducted.•Pseudo-first-order, logistics, modified, double and multi-Gompertz models were used.•All models fit the experimental data with R2 > 0.988.•Multi-Gompertz fitting showed the highest R2 and the lowest RMSE and AICc values. Modelling the conversion of residual biomass to renewable fuels is of high relevance to promote the development of effective technological solutions. The present study compares the performance of five different kinetic models (pseudo-first-order kinetics, logistics, modified Gompertz, double-Gompertz, and multi-Gompertz) to describe the cumulative methane production during a low-solids anaerobic digestion of marine macroalgae waste. Different substrate concentrations were evaluated (0.9, 1.7 and 2.5% TS) with the best methane yield (105.2 mL CH4.g VS−1) being obtained at the highest amount of biomass. All models fitted the experimental data with R2 > 0.988. The innovative multi-Gompertz model herein proposed led to the best performance indexes for all tested experimental conditions, allowing to predict methane yields more accurately when the digestion occurs in two or more steps, as it was the case with marine macroalgae waste.
doi_str_mv 10.1016/j.biortech.2022.127473
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2678430707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852422008021</els_id><sourcerecordid>2718257950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-38a66de12179f758ad42c24595be423f5e352f9b5aa416d056e5bbb5c29636583</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwF5CPXBL8iO2EE1DxEpW40LPlOJvWVRIXO0Hi3-OqcO5pDjs7s_shdE1JTgmVt9u8dj6MYDc5I4zllKlC8RM0o6XiGauUPEUzUkmSlYIV5-gixi0hhFPFZmj16PzaRLwLvpns6PyA2-B7HCC6ZjId7k1wAySxwZtubQCntt7EeIff02B0Fve-ga5zwxqbXcoxdnOJzlrTRbj60zlaPT99Ll6z5cfL2-JhmVnOxZjx0kjZAGVUVa0SpWkKZlkhKlFDwXgrgAvWVrUwpqCyIUKCqOtaWFZJLkXJ5-jmkJtqvyaIo-5dtOkYM4CfomaKlkyoSpDjVqnKghNFVLLKgzW9HGOAVu-CSxx-NCV6j1xv9T9yvUeuD8jT4v1hEdLP3w6CjtbBYKFxAeyoG--ORfwC3CyNgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678430707</pqid></control><display><type>article</type><title>Biogas production from residual marine macroalgae biomass: Kinetic modelling approach</title><source>Elsevier ScienceDirect Journals</source><creator>Pardilhó, Sara ; Pires, José C. ; Boaventura, Rui ; Almeida, Manuel ; Maia Dias, Joana</creator><creatorcontrib>Pardilhó, Sara ; Pires, José C. ; Boaventura, Rui ; Almeida, Manuel ; Maia Dias, Joana</creatorcontrib><description>[Display omitted] •Low-solids anaerobic digestion of marine macroalgae waste was conducted.•Pseudo-first-order, logistics, modified, double and multi-Gompertz models were used.•All models fit the experimental data with R2 &gt; 0.988.•Multi-Gompertz fitting showed the highest R2 and the lowest RMSE and AICc values. Modelling the conversion of residual biomass to renewable fuels is of high relevance to promote the development of effective technological solutions. The present study compares the performance of five different kinetic models (pseudo-first-order kinetics, logistics, modified Gompertz, double-Gompertz, and multi-Gompertz) to describe the cumulative methane production during a low-solids anaerobic digestion of marine macroalgae waste. Different substrate concentrations were evaluated (0.9, 1.7 and 2.5% TS) with the best methane yield (105.2 mL CH4.g VS−1) being obtained at the highest amount of biomass. All models fitted the experimental data with R2 &gt; 0.988. The innovative multi-Gompertz model herein proposed led to the best performance indexes for all tested experimental conditions, allowing to predict methane yields more accurately when the digestion occurs in two or more steps, as it was the case with marine macroalgae waste.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2022.127473</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anaerobic digestion ; biomass ; gas production (biological) ; macroalgae ; Marine macroalgae waste ; methane ; Methane production ; Predictive models ; wastes</subject><ispartof>Bioresource technology, 2022-09, Vol.359, p.127473-127473, Article 127473</ispartof><rights>2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-38a66de12179f758ad42c24595be423f5e352f9b5aa416d056e5bbb5c29636583</citedby><cites>FETCH-LOGICAL-c335t-38a66de12179f758ad42c24595be423f5e352f9b5aa416d056e5bbb5c29636583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2022.127473$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Pardilhó, Sara</creatorcontrib><creatorcontrib>Pires, José C.</creatorcontrib><creatorcontrib>Boaventura, Rui</creatorcontrib><creatorcontrib>Almeida, Manuel</creatorcontrib><creatorcontrib>Maia Dias, Joana</creatorcontrib><title>Biogas production from residual marine macroalgae biomass: Kinetic modelling approach</title><title>Bioresource technology</title><description>[Display omitted] •Low-solids anaerobic digestion of marine macroalgae waste was conducted.•Pseudo-first-order, logistics, modified, double and multi-Gompertz models were used.•All models fit the experimental data with R2 &gt; 0.988.•Multi-Gompertz fitting showed the highest R2 and the lowest RMSE and AICc values. Modelling the conversion of residual biomass to renewable fuels is of high relevance to promote the development of effective technological solutions. The present study compares the performance of five different kinetic models (pseudo-first-order kinetics, logistics, modified Gompertz, double-Gompertz, and multi-Gompertz) to describe the cumulative methane production during a low-solids anaerobic digestion of marine macroalgae waste. Different substrate concentrations were evaluated (0.9, 1.7 and 2.5% TS) with the best methane yield (105.2 mL CH4.g VS−1) being obtained at the highest amount of biomass. All models fitted the experimental data with R2 &gt; 0.988. The innovative multi-Gompertz model herein proposed led to the best performance indexes for all tested experimental conditions, allowing to predict methane yields more accurately when the digestion occurs in two or more steps, as it was the case with marine macroalgae waste.</description><subject>Anaerobic digestion</subject><subject>biomass</subject><subject>gas production (biological)</subject><subject>macroalgae</subject><subject>Marine macroalgae waste</subject><subject>methane</subject><subject>Methane production</subject><subject>Predictive models</subject><subject>wastes</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwF5CPXBL8iO2EE1DxEpW40LPlOJvWVRIXO0Hi3-OqcO5pDjs7s_shdE1JTgmVt9u8dj6MYDc5I4zllKlC8RM0o6XiGauUPEUzUkmSlYIV5-gixi0hhFPFZmj16PzaRLwLvpns6PyA2-B7HCC6ZjId7k1wAySxwZtubQCntt7EeIff02B0Fve-ga5zwxqbXcoxdnOJzlrTRbj60zlaPT99Ll6z5cfL2-JhmVnOxZjx0kjZAGVUVa0SpWkKZlkhKlFDwXgrgAvWVrUwpqCyIUKCqOtaWFZJLkXJ5-jmkJtqvyaIo-5dtOkYM4CfomaKlkyoSpDjVqnKghNFVLLKgzW9HGOAVu-CSxx-NCV6j1xv9T9yvUeuD8jT4v1hEdLP3w6CjtbBYKFxAeyoG--ORfwC3CyNgw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Pardilhó, Sara</creator><creator>Pires, José C.</creator><creator>Boaventura, Rui</creator><creator>Almeida, Manuel</creator><creator>Maia Dias, Joana</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20220901</creationdate><title>Biogas production from residual marine macroalgae biomass: Kinetic modelling approach</title><author>Pardilhó, Sara ; Pires, José C. ; Boaventura, Rui ; Almeida, Manuel ; Maia Dias, Joana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-38a66de12179f758ad42c24595be423f5e352f9b5aa416d056e5bbb5c29636583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anaerobic digestion</topic><topic>biomass</topic><topic>gas production (biological)</topic><topic>macroalgae</topic><topic>Marine macroalgae waste</topic><topic>methane</topic><topic>Methane production</topic><topic>Predictive models</topic><topic>wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pardilhó, Sara</creatorcontrib><creatorcontrib>Pires, José C.</creatorcontrib><creatorcontrib>Boaventura, Rui</creatorcontrib><creatorcontrib>Almeida, Manuel</creatorcontrib><creatorcontrib>Maia Dias, Joana</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pardilhó, Sara</au><au>Pires, José C.</au><au>Boaventura, Rui</au><au>Almeida, Manuel</au><au>Maia Dias, Joana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biogas production from residual marine macroalgae biomass: Kinetic modelling approach</atitle><jtitle>Bioresource technology</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>359</volume><spage>127473</spage><epage>127473</epage><pages>127473-127473</pages><artnum>127473</artnum><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted] •Low-solids anaerobic digestion of marine macroalgae waste was conducted.•Pseudo-first-order, logistics, modified, double and multi-Gompertz models were used.•All models fit the experimental data with R2 &gt; 0.988.•Multi-Gompertz fitting showed the highest R2 and the lowest RMSE and AICc values. Modelling the conversion of residual biomass to renewable fuels is of high relevance to promote the development of effective technological solutions. The present study compares the performance of five different kinetic models (pseudo-first-order kinetics, logistics, modified Gompertz, double-Gompertz, and multi-Gompertz) to describe the cumulative methane production during a low-solids anaerobic digestion of marine macroalgae waste. Different substrate concentrations were evaluated (0.9, 1.7 and 2.5% TS) with the best methane yield (105.2 mL CH4.g VS−1) being obtained at the highest amount of biomass. All models fitted the experimental data with R2 &gt; 0.988. The innovative multi-Gompertz model herein proposed led to the best performance indexes for all tested experimental conditions, allowing to predict methane yields more accurately when the digestion occurs in two or more steps, as it was the case with marine macroalgae waste.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.biortech.2022.127473</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2022-09, Vol.359, p.127473-127473, Article 127473
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_2678430707
source Elsevier ScienceDirect Journals
subjects Anaerobic digestion
biomass
gas production (biological)
macroalgae
Marine macroalgae waste
methane
Methane production
Predictive models
wastes
title Biogas production from residual marine macroalgae biomass: Kinetic modelling approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biogas%20production%20from%20residual%20marine%20macroalgae%20biomass:%20Kinetic%20modelling%20approach&rft.jtitle=Bioresource%20technology&rft.au=Pardilh%C3%B3,%20Sara&rft.date=2022-09-01&rft.volume=359&rft.spage=127473&rft.epage=127473&rft.pages=127473-127473&rft.artnum=127473&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2022.127473&rft_dat=%3Cproquest_cross%3E2718257950%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678430707&rft_id=info:pmid/&rft_els_id=S0960852422008021&rfr_iscdi=true