Tuning the Anisotropic Facet of Lead Chromate Photocatalysts to Promote Spatial Charge Separation

A crucial issue in artificial photosynthesis is how to modulate the behaviors of photogenerated charges of semiconductor photocatalysts. Here, using lead chromate (PbCrO4) as an example, we conducted the morphology tailoring from parallelepiped (p‐PbCrO4) to truncated decahedron (t‐PbCrO4) and elong...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-09, Vol.61 (37), p.e202207161-n/a
Hauptverfasser: Jiang, Wenchao, Ni, Chenwei, Zhang, Lingcong, Shi, Ming, Qu, Jiangshan, Zhou, Hongpeng, Zhang, Chengbo, Chen, Ruotian, Wang, Xiuli, Li, Can, Li, Rengui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 37
container_start_page e202207161
container_title Angewandte Chemie International Edition
container_volume 61
creator Jiang, Wenchao
Ni, Chenwei
Zhang, Lingcong
Shi, Ming
Qu, Jiangshan
Zhou, Hongpeng
Zhang, Chengbo
Chen, Ruotian
Wang, Xiuli
Li, Can
Li, Rengui
description A crucial issue in artificial photosynthesis is how to modulate the behaviors of photogenerated charges of semiconductor photocatalysts. Here, using lead chromate (PbCrO4) as an example, we conducted the morphology tailoring from parallelepiped (p‐PbCrO4) to truncated decahedron (t‐PbCrO4) and elongated rhombic (r‐PbCrO4), resulting in exposed anisotropic facets. The spatial separation of photogenerated charges closely correlates to the anisotropic facets of crystals, which can only be realized for t‐PbCrO4 and r‐PbCrO4. The charge‐separation efficiencies exhibit a quasilinear relation with the surface photovoltage difference between anisotropic facets. The r‐PbCrO4 gives an apparent quantum efficiency of 6.5 % at 500 nm for photocatalytic water oxidation using Fe3+ ions as electron acceptors. Moreover, the oxidation reverse reaction from Fe2+ to Fe3+ ions was completely blocked with ∼100 % of Fe3+ conversion achieved on the anisotropic PbCrO4 crystals. Spatial separation of photogenerated electrons and holes correlates closely with the anisotropic facets of PbCrO4 crystals. Charge‐separation efficiencies exhibit a quasilinear relationship with the surface photovoltage difference between anisotropic facets. An apparent quantum efficiency (AQE) of 6.5 % at 500 nm for photocatalytic water oxidation was achieved after optimizing the anisotropic facets of the PbCrO4 crystals.
doi_str_mv 10.1002/anie.202207161
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2678425717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678425717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3501-5050015f69a4be1c45ba7335c25b37051d7b3d2d1fc66d62a1484d65e379e8c73</originalsourceid><addsrcrecordid>eNqFkM1LwzAYxoMoOD-ungNevHTmo2na4xibDoYOnOfwNk23jq6pSYrsvzdjouDF0_vx_J6XlwehO0rGlBD2CF1jxowwRiTN6BkaUcFowqXk57FPOU9kLugluvJ-F_k8J9kIwXromm6Dw9bgSdd4G5ztG43noE3AtsZLAxWebp3dQzB4tbXBagjQHnzwOFi8ioqNylsPoYE2ouA2cTQ9uLix3Q26qKH15va7XqP3-Ww9fU6Wr0-L6WSZaC4ITQQRhFBRZwWkpaE6FSVIzoVmouSSCFrJklesorXOsipjQNM8rTJhuCxMriW_Rg-nu72zH4PxQe0br03bQmfs4BXLZJ4yIekRvf-D7uzguvidYpIUkvLIRmp8orSz3jtTq941e3AHRYk6Jq6OiaufxKOhOBk-m9Yc_qHV5GUx-_V-AXz9g_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2709713678</pqid></control><display><type>article</type><title>Tuning the Anisotropic Facet of Lead Chromate Photocatalysts to Promote Spatial Charge Separation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jiang, Wenchao ; Ni, Chenwei ; Zhang, Lingcong ; Shi, Ming ; Qu, Jiangshan ; Zhou, Hongpeng ; Zhang, Chengbo ; Chen, Ruotian ; Wang, Xiuli ; Li, Can ; Li, Rengui</creator><creatorcontrib>Jiang, Wenchao ; Ni, Chenwei ; Zhang, Lingcong ; Shi, Ming ; Qu, Jiangshan ; Zhou, Hongpeng ; Zhang, Chengbo ; Chen, Ruotian ; Wang, Xiuli ; Li, Can ; Li, Rengui</creatorcontrib><description>A crucial issue in artificial photosynthesis is how to modulate the behaviors of photogenerated charges of semiconductor photocatalysts. Here, using lead chromate (PbCrO4) as an example, we conducted the morphology tailoring from parallelepiped (p‐PbCrO4) to truncated decahedron (t‐PbCrO4) and elongated rhombic (r‐PbCrO4), resulting in exposed anisotropic facets. The spatial separation of photogenerated charges closely correlates to the anisotropic facets of crystals, which can only be realized for t‐PbCrO4 and r‐PbCrO4. The charge‐separation efficiencies exhibit a quasilinear relation with the surface photovoltage difference between anisotropic facets. The r‐PbCrO4 gives an apparent quantum efficiency of 6.5 % at 500 nm for photocatalytic water oxidation using Fe3+ ions as electron acceptors. Moreover, the oxidation reverse reaction from Fe2+ to Fe3+ ions was completely blocked with ∼100 % of Fe3+ conversion achieved on the anisotropic PbCrO4 crystals. Spatial separation of photogenerated electrons and holes correlates closely with the anisotropic facets of PbCrO4 crystals. Charge‐separation efficiencies exhibit a quasilinear relationship with the surface photovoltage difference between anisotropic facets. An apparent quantum efficiency (AQE) of 6.5 % at 500 nm for photocatalytic water oxidation was achieved after optimizing the anisotropic facets of the PbCrO4 crystals.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202207161</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anisotropic Facet ; Anisotropy ; Charge efficiency ; Chromate ; Chromates ; Crystals ; Ferric ions ; Ions ; Iron ; Lead Chromate ; Oxidation ; Parallelepipeds ; Photocatalysis ; Photocatalysts ; Photosynthesis ; Quantum efficiency ; Separation ; Spatial Charge Separation ; Surface Photovoltage</subject><ispartof>Angewandte Chemie International Edition, 2022-09, Vol.61 (37), p.e202207161-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3501-5050015f69a4be1c45ba7335c25b37051d7b3d2d1fc66d62a1484d65e379e8c73</citedby><cites>FETCH-LOGICAL-c3501-5050015f69a4be1c45ba7335c25b37051d7b3d2d1fc66d62a1484d65e379e8c73</cites><orcidid>0000-0002-8099-0934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202207161$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202207161$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Jiang, Wenchao</creatorcontrib><creatorcontrib>Ni, Chenwei</creatorcontrib><creatorcontrib>Zhang, Lingcong</creatorcontrib><creatorcontrib>Shi, Ming</creatorcontrib><creatorcontrib>Qu, Jiangshan</creatorcontrib><creatorcontrib>Zhou, Hongpeng</creatorcontrib><creatorcontrib>Zhang, Chengbo</creatorcontrib><creatorcontrib>Chen, Ruotian</creatorcontrib><creatorcontrib>Wang, Xiuli</creatorcontrib><creatorcontrib>Li, Can</creatorcontrib><creatorcontrib>Li, Rengui</creatorcontrib><title>Tuning the Anisotropic Facet of Lead Chromate Photocatalysts to Promote Spatial Charge Separation</title><title>Angewandte Chemie International Edition</title><description>A crucial issue in artificial photosynthesis is how to modulate the behaviors of photogenerated charges of semiconductor photocatalysts. Here, using lead chromate (PbCrO4) as an example, we conducted the morphology tailoring from parallelepiped (p‐PbCrO4) to truncated decahedron (t‐PbCrO4) and elongated rhombic (r‐PbCrO4), resulting in exposed anisotropic facets. The spatial separation of photogenerated charges closely correlates to the anisotropic facets of crystals, which can only be realized for t‐PbCrO4 and r‐PbCrO4. The charge‐separation efficiencies exhibit a quasilinear relation with the surface photovoltage difference between anisotropic facets. The r‐PbCrO4 gives an apparent quantum efficiency of 6.5 % at 500 nm for photocatalytic water oxidation using Fe3+ ions as electron acceptors. Moreover, the oxidation reverse reaction from Fe2+ to Fe3+ ions was completely blocked with ∼100 % of Fe3+ conversion achieved on the anisotropic PbCrO4 crystals. Spatial separation of photogenerated electrons and holes correlates closely with the anisotropic facets of PbCrO4 crystals. Charge‐separation efficiencies exhibit a quasilinear relationship with the surface photovoltage difference between anisotropic facets. An apparent quantum efficiency (AQE) of 6.5 % at 500 nm for photocatalytic water oxidation was achieved after optimizing the anisotropic facets of the PbCrO4 crystals.</description><subject>Anisotropic Facet</subject><subject>Anisotropy</subject><subject>Charge efficiency</subject><subject>Chromate</subject><subject>Chromates</subject><subject>Crystals</subject><subject>Ferric ions</subject><subject>Ions</subject><subject>Iron</subject><subject>Lead Chromate</subject><subject>Oxidation</subject><subject>Parallelepipeds</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photosynthesis</subject><subject>Quantum efficiency</subject><subject>Separation</subject><subject>Spatial Charge Separation</subject><subject>Surface Photovoltage</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LwzAYxoMoOD-ungNevHTmo2na4xibDoYOnOfwNk23jq6pSYrsvzdjouDF0_vx_J6XlwehO0rGlBD2CF1jxowwRiTN6BkaUcFowqXk57FPOU9kLugluvJ-F_k8J9kIwXromm6Dw9bgSdd4G5ztG43noE3AtsZLAxWebp3dQzB4tbXBagjQHnzwOFi8ioqNylsPoYE2ouA2cTQ9uLix3Q26qKH15va7XqP3-Ww9fU6Wr0-L6WSZaC4ITQQRhFBRZwWkpaE6FSVIzoVmouSSCFrJklesorXOsipjQNM8rTJhuCxMriW_Rg-nu72zH4PxQe0br03bQmfs4BXLZJ4yIekRvf-D7uzguvidYpIUkvLIRmp8orSz3jtTq941e3AHRYk6Jq6OiaufxKOhOBk-m9Yc_qHV5GUx-_V-AXz9g_4</recordid><startdate>20220912</startdate><enddate>20220912</enddate><creator>Jiang, Wenchao</creator><creator>Ni, Chenwei</creator><creator>Zhang, Lingcong</creator><creator>Shi, Ming</creator><creator>Qu, Jiangshan</creator><creator>Zhou, Hongpeng</creator><creator>Zhang, Chengbo</creator><creator>Chen, Ruotian</creator><creator>Wang, Xiuli</creator><creator>Li, Can</creator><creator>Li, Rengui</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8099-0934</orcidid></search><sort><creationdate>20220912</creationdate><title>Tuning the Anisotropic Facet of Lead Chromate Photocatalysts to Promote Spatial Charge Separation</title><author>Jiang, Wenchao ; Ni, Chenwei ; Zhang, Lingcong ; Shi, Ming ; Qu, Jiangshan ; Zhou, Hongpeng ; Zhang, Chengbo ; Chen, Ruotian ; Wang, Xiuli ; Li, Can ; Li, Rengui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3501-5050015f69a4be1c45ba7335c25b37051d7b3d2d1fc66d62a1484d65e379e8c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropic Facet</topic><topic>Anisotropy</topic><topic>Charge efficiency</topic><topic>Chromate</topic><topic>Chromates</topic><topic>Crystals</topic><topic>Ferric ions</topic><topic>Ions</topic><topic>Iron</topic><topic>Lead Chromate</topic><topic>Oxidation</topic><topic>Parallelepipeds</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photosynthesis</topic><topic>Quantum efficiency</topic><topic>Separation</topic><topic>Spatial Charge Separation</topic><topic>Surface Photovoltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Wenchao</creatorcontrib><creatorcontrib>Ni, Chenwei</creatorcontrib><creatorcontrib>Zhang, Lingcong</creatorcontrib><creatorcontrib>Shi, Ming</creatorcontrib><creatorcontrib>Qu, Jiangshan</creatorcontrib><creatorcontrib>Zhou, Hongpeng</creatorcontrib><creatorcontrib>Zhang, Chengbo</creatorcontrib><creatorcontrib>Chen, Ruotian</creatorcontrib><creatorcontrib>Wang, Xiuli</creatorcontrib><creatorcontrib>Li, Can</creatorcontrib><creatorcontrib>Li, Rengui</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Wenchao</au><au>Ni, Chenwei</au><au>Zhang, Lingcong</au><au>Shi, Ming</au><au>Qu, Jiangshan</au><au>Zhou, Hongpeng</au><au>Zhang, Chengbo</au><au>Chen, Ruotian</au><au>Wang, Xiuli</au><au>Li, Can</au><au>Li, Rengui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning the Anisotropic Facet of Lead Chromate Photocatalysts to Promote Spatial Charge Separation</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2022-09-12</date><risdate>2022</risdate><volume>61</volume><issue>37</issue><spage>e202207161</spage><epage>n/a</epage><pages>e202207161-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>A crucial issue in artificial photosynthesis is how to modulate the behaviors of photogenerated charges of semiconductor photocatalysts. Here, using lead chromate (PbCrO4) as an example, we conducted the morphology tailoring from parallelepiped (p‐PbCrO4) to truncated decahedron (t‐PbCrO4) and elongated rhombic (r‐PbCrO4), resulting in exposed anisotropic facets. The spatial separation of photogenerated charges closely correlates to the anisotropic facets of crystals, which can only be realized for t‐PbCrO4 and r‐PbCrO4. The charge‐separation efficiencies exhibit a quasilinear relation with the surface photovoltage difference between anisotropic facets. The r‐PbCrO4 gives an apparent quantum efficiency of 6.5 % at 500 nm for photocatalytic water oxidation using Fe3+ ions as electron acceptors. Moreover, the oxidation reverse reaction from Fe2+ to Fe3+ ions was completely blocked with ∼100 % of Fe3+ conversion achieved on the anisotropic PbCrO4 crystals. Spatial separation of photogenerated electrons and holes correlates closely with the anisotropic facets of PbCrO4 crystals. Charge‐separation efficiencies exhibit a quasilinear relationship with the surface photovoltage difference between anisotropic facets. An apparent quantum efficiency (AQE) of 6.5 % at 500 nm for photocatalytic water oxidation was achieved after optimizing the anisotropic facets of the PbCrO4 crystals.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202207161</doi><tpages>7</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8099-0934</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2022-09, Vol.61 (37), p.e202207161-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2678425717
source Wiley Online Library Journals Frontfile Complete
subjects Anisotropic Facet
Anisotropy
Charge efficiency
Chromate
Chromates
Crystals
Ferric ions
Ions
Iron
Lead Chromate
Oxidation
Parallelepipeds
Photocatalysis
Photocatalysts
Photosynthesis
Quantum efficiency
Separation
Spatial Charge Separation
Surface Photovoltage
title Tuning the Anisotropic Facet of Lead Chromate Photocatalysts to Promote Spatial Charge Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20the%20Anisotropic%20Facet%20of%20Lead%20Chromate%20Photocatalysts%20to%20Promote%20Spatial%20Charge%20Separation&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Jiang,%20Wenchao&rft.date=2022-09-12&rft.volume=61&rft.issue=37&rft.spage=e202207161&rft.epage=n/a&rft.pages=e202207161-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202207161&rft_dat=%3Cproquest_cross%3E2678425717%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2709713678&rft_id=info:pmid/&rfr_iscdi=true