Stability of power-law discs — I. The Fredholm integral equation

The power-law discs are a family of infinitesimally thin, axisymmetric stellar discs of infinite extent. The rotation curve can be rising, falling or flat. The self-consistent power-law discs are scale-free, so that all physical quantities vary as a power of radius. They possess simple equilibrium d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 1998-10, Vol.300 (1), p.83-105
Hauptverfasser: Evans, N. W., Read, J. C. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue 1
container_start_page 83
container_title Monthly notices of the Royal Astronomical Society
container_volume 300
creator Evans, N. W.
Read, J. C. A.
description The power-law discs are a family of infinitesimally thin, axisymmetric stellar discs of infinite extent. The rotation curve can be rising, falling or flat. The self-consistent power-law discs are scale-free, so that all physical quantities vary as a power of radius. They possess simple equilibrium distribution functions depending on the two classical integrals, energy and angular momentum. While maintaining the scale-free equilibrium force law, the power-law discs can be transformed into cut-out discs by preventing stars close to the origin (and sometimes also at large radii) from participating in any disturbance. This paper derives the homogeneous Fredholm integral equation for the in-plane normal modes in the self-consistent and the cut-out power-law discs. This is done by linearizing the collisionless Boltzmann equation to find the response density corresponding to any imposed density and potential. The normal modes — that is, the self-consistent modes of oscillation — are found by requiring the imposed density to equal the response density. In practice, this scheme is implemented in Fourier space, by decomposing both imposed and response densities in logarithmic spirals. The Fredholm integral equation then relates the transform of the imposed density to the transform of the response density. Numerical strategies to solve the integral equation and to isolate the growth rates and the pattern speeds of the normal modes are discussed.
doi_str_mv 10.1046/j.1365-8711.1998.01863.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26783959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1046/j.1365-8711.1998.01863.x</oup_id><sourcerecordid>26783959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4743-33a5b3c500e76b2c5c8f4a5c514a221791b555d8fee197ebbf1e2cbac0cae7113</originalsourceid><addsrcrecordid>eNqNkE1OwzAQRi0EEqVwB6_YJdhx7CQLFlDRH1RAoiAQG8txJzQlbVI7Udsdh-CEnISkQaxAYjUjzfdmRg8hTIlLiS_O5i5lgjthQKlLoyh0CQ0Fczd7qLMbeJEQ-6hDCGtDh-jI2jkhxGee6KDLSaniNEvLLc4TXORrME6m1niaWm3x5_sHHrn4YQa4b2A6y7MFTpclvBqVYVhVqkzz5TE6SFRm4eS7dtFj_-qhN3TGd4NR72LsaD_wmcOY4jHTnBAIROxprsPEV1xz6ivPo0FEY875NEwAaBRAHCcUPB0rTbSC-nHWRaft3sLkqwpsKRf1k5Blagl5ZaUngpBFPKqDYRvUJrfWQCILky6U2UpKZCNNzmXjRjY-ZCNN7qTJTY2et-g6zWD7b07e3N43Xc2zls-r4g_a-e2q01KpLWHzwynzJkXAAi6Hzy-yPxhMrofRk_TZF__PkdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26783959</pqid></control><display><type>article</type><title>Stability of power-law discs — I. The Fredholm integral equation</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Oxford Journals Open Access Collection</source><creator>Evans, N. W. ; Read, J. C. A.</creator><creatorcontrib>Evans, N. W. ; Read, J. C. A.</creatorcontrib><description>The power-law discs are a family of infinitesimally thin, axisymmetric stellar discs of infinite extent. The rotation curve can be rising, falling or flat. The self-consistent power-law discs are scale-free, so that all physical quantities vary as a power of radius. They possess simple equilibrium distribution functions depending on the two classical integrals, energy and angular momentum. While maintaining the scale-free equilibrium force law, the power-law discs can be transformed into cut-out discs by preventing stars close to the origin (and sometimes also at large radii) from participating in any disturbance. This paper derives the homogeneous Fredholm integral equation for the in-plane normal modes in the self-consistent and the cut-out power-law discs. This is done by linearizing the collisionless Boltzmann equation to find the response density corresponding to any imposed density and potential. The normal modes — that is, the self-consistent modes of oscillation — are found by requiring the imposed density to equal the response density. In practice, this scheme is implemented in Fourier space, by decomposing both imposed and response densities in logarithmic spirals. The Fredholm integral equation then relates the transform of the imposed density to the transform of the response density. Numerical strategies to solve the integral equation and to isolate the growth rates and the pattern speeds of the normal modes are discussed.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1046/j.1365-8711.1998.01863.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>celestial mechanics ; galaxies: kinematics and dynamics ; galaxies: spiral ; instabilities ; methods: analytical ; methods: numerical ; stellar dynamics</subject><ispartof>Monthly notices of the Royal Astronomical Society, 1998-10, Vol.300 (1), p.83-105</ispartof><rights>1998 RAS 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4743-33a5b3c500e76b2c5c8f4a5c514a221791b555d8fee197ebbf1e2cbac0cae7113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-8711.1998.01863.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-8711.1998.01863.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Evans, N. W.</creatorcontrib><creatorcontrib>Read, J. C. A.</creatorcontrib><title>Stability of power-law discs — I. The Fredholm integral equation</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>The power-law discs are a family of infinitesimally thin, axisymmetric stellar discs of infinite extent. The rotation curve can be rising, falling or flat. The self-consistent power-law discs are scale-free, so that all physical quantities vary as a power of radius. They possess simple equilibrium distribution functions depending on the two classical integrals, energy and angular momentum. While maintaining the scale-free equilibrium force law, the power-law discs can be transformed into cut-out discs by preventing stars close to the origin (and sometimes also at large radii) from participating in any disturbance. This paper derives the homogeneous Fredholm integral equation for the in-plane normal modes in the self-consistent and the cut-out power-law discs. This is done by linearizing the collisionless Boltzmann equation to find the response density corresponding to any imposed density and potential. The normal modes — that is, the self-consistent modes of oscillation — are found by requiring the imposed density to equal the response density. In practice, this scheme is implemented in Fourier space, by decomposing both imposed and response densities in logarithmic spirals. The Fredholm integral equation then relates the transform of the imposed density to the transform of the response density. Numerical strategies to solve the integral equation and to isolate the growth rates and the pattern speeds of the normal modes are discussed.</description><subject>celestial mechanics</subject><subject>galaxies: kinematics and dynamics</subject><subject>galaxies: spiral</subject><subject>instabilities</subject><subject>methods: analytical</subject><subject>methods: numerical</subject><subject>stellar dynamics</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqNkE1OwzAQRi0EEqVwB6_YJdhx7CQLFlDRH1RAoiAQG8txJzQlbVI7Udsdh-CEnISkQaxAYjUjzfdmRg8hTIlLiS_O5i5lgjthQKlLoyh0CQ0Fczd7qLMbeJEQ-6hDCGtDh-jI2jkhxGee6KDLSaniNEvLLc4TXORrME6m1niaWm3x5_sHHrn4YQa4b2A6y7MFTpclvBqVYVhVqkzz5TE6SFRm4eS7dtFj_-qhN3TGd4NR72LsaD_wmcOY4jHTnBAIROxprsPEV1xz6ivPo0FEY875NEwAaBRAHCcUPB0rTbSC-nHWRaft3sLkqwpsKRf1k5Blagl5ZaUngpBFPKqDYRvUJrfWQCILky6U2UpKZCNNzmXjRjY-ZCNN7qTJTY2et-g6zWD7b07e3N43Xc2zls-r4g_a-e2q01KpLWHzwynzJkXAAi6Hzy-yPxhMrofRk_TZF__PkdA</recordid><startdate>19981011</startdate><enddate>19981011</enddate><creator>Evans, N. W.</creator><creator>Read, J. C. A.</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19981011</creationdate><title>Stability of power-law discs — I. The Fredholm integral equation</title><author>Evans, N. W. ; Read, J. C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4743-33a5b3c500e76b2c5c8f4a5c514a221791b555d8fee197ebbf1e2cbac0cae7113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>celestial mechanics</topic><topic>galaxies: kinematics and dynamics</topic><topic>galaxies: spiral</topic><topic>instabilities</topic><topic>methods: analytical</topic><topic>methods: numerical</topic><topic>stellar dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, N. W.</creatorcontrib><creatorcontrib>Read, J. C. A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evans, N. W.</au><au>Read, J. C. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of power-law discs — I. The Fredholm integral equation</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><date>1998-10-11</date><risdate>1998</risdate><volume>300</volume><issue>1</issue><spage>83</spage><epage>105</epage><pages>83-105</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>The power-law discs are a family of infinitesimally thin, axisymmetric stellar discs of infinite extent. The rotation curve can be rising, falling or flat. The self-consistent power-law discs are scale-free, so that all physical quantities vary as a power of radius. They possess simple equilibrium distribution functions depending on the two classical integrals, energy and angular momentum. While maintaining the scale-free equilibrium force law, the power-law discs can be transformed into cut-out discs by preventing stars close to the origin (and sometimes also at large radii) from participating in any disturbance. This paper derives the homogeneous Fredholm integral equation for the in-plane normal modes in the self-consistent and the cut-out power-law discs. This is done by linearizing the collisionless Boltzmann equation to find the response density corresponding to any imposed density and potential. The normal modes — that is, the self-consistent modes of oscillation — are found by requiring the imposed density to equal the response density. In practice, this scheme is implemented in Fourier space, by decomposing both imposed and response densities in logarithmic spirals. The Fredholm integral equation then relates the transform of the imposed density to the transform of the response density. Numerical strategies to solve the integral equation and to isolate the growth rates and the pattern speeds of the normal modes are discussed.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><doi>10.1046/j.1365-8711.1998.01863.x</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 1998-10, Vol.300 (1), p.83-105
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_26783959
source Wiley Online Library Journals Frontfile Complete; Oxford Journals Open Access Collection
subjects celestial mechanics
galaxies: kinematics and dynamics
galaxies: spiral
instabilities
methods: analytical
methods: numerical
stellar dynamics
title Stability of power-law discs — I. The Fredholm integral equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20power-law%20discs%20%E2%80%94%20I.%20The%20Fredholm%20integral%20equation&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Evans,%20N.%20W.&rft.date=1998-10-11&rft.volume=300&rft.issue=1&rft.spage=83&rft.epage=105&rft.pages=83-105&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1046/j.1365-8711.1998.01863.x&rft_dat=%3Cproquest_cross%3E26783959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26783959&rft_id=info:pmid/&rft_oup_id=10.1046/j.1365-8711.1998.01863.x&rfr_iscdi=true