Stability of power-law discs — I. The Fredholm integral equation
The power-law discs are a family of infinitesimally thin, axisymmetric stellar discs of infinite extent. The rotation curve can be rising, falling or flat. The self-consistent power-law discs are scale-free, so that all physical quantities vary as a power of radius. They possess simple equilibrium d...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 1998-10, Vol.300 (1), p.83-105 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105 |
---|---|
container_issue | 1 |
container_start_page | 83 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 300 |
creator | Evans, N. W. Read, J. C. A. |
description | The power-law discs are a family of infinitesimally thin, axisymmetric stellar discs of infinite extent. The rotation curve can be rising, falling or flat. The self-consistent power-law discs are scale-free, so that all physical quantities vary as a power of radius. They possess simple equilibrium distribution functions depending on the two classical integrals, energy and angular momentum. While maintaining the scale-free equilibrium force law, the power-law discs can be transformed into cut-out discs by preventing stars close to the origin (and sometimes also at large radii) from participating in any disturbance. This paper derives the homogeneous Fredholm integral equation for the in-plane normal modes in the self-consistent and the cut-out power-law discs. This is done by linearizing the collisionless Boltzmann equation to find the response density corresponding to any imposed density and potential. The normal modes — that is, the self-consistent modes of oscillation — are found by requiring the imposed density to equal the response density. In practice, this scheme is implemented in Fourier space, by decomposing both imposed and response densities in logarithmic spirals. The Fredholm integral equation then relates the transform of the imposed density to the transform of the response density. Numerical strategies to solve the integral equation and to isolate the growth rates and the pattern speeds of the normal modes are discussed. |
doi_str_mv | 10.1046/j.1365-8711.1998.01863.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26783959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1046/j.1365-8711.1998.01863.x</oup_id><sourcerecordid>26783959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4743-33a5b3c500e76b2c5c8f4a5c514a221791b555d8fee197ebbf1e2cbac0cae7113</originalsourceid><addsrcrecordid>eNqNkE1OwzAQRi0EEqVwB6_YJdhx7CQLFlDRH1RAoiAQG8txJzQlbVI7Udsdh-CEnISkQaxAYjUjzfdmRg8hTIlLiS_O5i5lgjthQKlLoyh0CQ0Fczd7qLMbeJEQ-6hDCGtDh-jI2jkhxGee6KDLSaniNEvLLc4TXORrME6m1niaWm3x5_sHHrn4YQa4b2A6y7MFTpclvBqVYVhVqkzz5TE6SFRm4eS7dtFj_-qhN3TGd4NR72LsaD_wmcOY4jHTnBAIROxprsPEV1xz6ivPo0FEY875NEwAaBRAHCcUPB0rTbSC-nHWRaft3sLkqwpsKRf1k5Blagl5ZaUngpBFPKqDYRvUJrfWQCILky6U2UpKZCNNzmXjRjY-ZCNN7qTJTY2et-g6zWD7b07e3N43Xc2zls-r4g_a-e2q01KpLWHzwynzJkXAAi6Hzy-yPxhMrofRk_TZF__PkdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26783959</pqid></control><display><type>article</type><title>Stability of power-law discs — I. The Fredholm integral equation</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Oxford Journals Open Access Collection</source><creator>Evans, N. W. ; Read, J. C. A.</creator><creatorcontrib>Evans, N. W. ; Read, J. C. A.</creatorcontrib><description>The power-law discs are a family of infinitesimally thin, axisymmetric stellar discs of infinite extent. The rotation curve can be rising, falling or flat. The self-consistent power-law discs are scale-free, so that all physical quantities vary as a power of radius. They possess simple equilibrium distribution functions depending on the two classical integrals, energy and angular momentum. While maintaining the scale-free equilibrium force law, the power-law discs can be transformed into cut-out discs by preventing stars close to the origin (and sometimes also at large radii) from participating in any disturbance. This paper derives the homogeneous Fredholm integral equation for the in-plane normal modes in the self-consistent and the cut-out power-law discs. This is done by linearizing the collisionless Boltzmann equation to find the response density corresponding to any imposed density and potential. The normal modes — that is, the self-consistent modes of oscillation — are found by requiring the imposed density to equal the response density. In practice, this scheme is implemented in Fourier space, by decomposing both imposed and response densities in logarithmic spirals. The Fredholm integral equation then relates the transform of the imposed density to the transform of the response density. Numerical strategies to solve the integral equation and to isolate the growth rates and the pattern speeds of the normal modes are discussed.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1046/j.1365-8711.1998.01863.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>celestial mechanics ; galaxies: kinematics and dynamics ; galaxies: spiral ; instabilities ; methods: analytical ; methods: numerical ; stellar dynamics</subject><ispartof>Monthly notices of the Royal Astronomical Society, 1998-10, Vol.300 (1), p.83-105</ispartof><rights>1998 RAS 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4743-33a5b3c500e76b2c5c8f4a5c514a221791b555d8fee197ebbf1e2cbac0cae7113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-8711.1998.01863.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-8711.1998.01863.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Evans, N. W.</creatorcontrib><creatorcontrib>Read, J. C. A.</creatorcontrib><title>Stability of power-law discs — I. The Fredholm integral equation</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>The power-law discs are a family of infinitesimally thin, axisymmetric stellar discs of infinite extent. The rotation curve can be rising, falling or flat. The self-consistent power-law discs are scale-free, so that all physical quantities vary as a power of radius. They possess simple equilibrium distribution functions depending on the two classical integrals, energy and angular momentum. While maintaining the scale-free equilibrium force law, the power-law discs can be transformed into cut-out discs by preventing stars close to the origin (and sometimes also at large radii) from participating in any disturbance. This paper derives the homogeneous Fredholm integral equation for the in-plane normal modes in the self-consistent and the cut-out power-law discs. This is done by linearizing the collisionless Boltzmann equation to find the response density corresponding to any imposed density and potential. The normal modes — that is, the self-consistent modes of oscillation — are found by requiring the imposed density to equal the response density. In practice, this scheme is implemented in Fourier space, by decomposing both imposed and response densities in logarithmic spirals. The Fredholm integral equation then relates the transform of the imposed density to the transform of the response density. Numerical strategies to solve the integral equation and to isolate the growth rates and the pattern speeds of the normal modes are discussed.</description><subject>celestial mechanics</subject><subject>galaxies: kinematics and dynamics</subject><subject>galaxies: spiral</subject><subject>instabilities</subject><subject>methods: analytical</subject><subject>methods: numerical</subject><subject>stellar dynamics</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqNkE1OwzAQRi0EEqVwB6_YJdhx7CQLFlDRH1RAoiAQG8txJzQlbVI7Udsdh-CEnISkQaxAYjUjzfdmRg8hTIlLiS_O5i5lgjthQKlLoyh0CQ0Fczd7qLMbeJEQ-6hDCGtDh-jI2jkhxGee6KDLSaniNEvLLc4TXORrME6m1niaWm3x5_sHHrn4YQa4b2A6y7MFTpclvBqVYVhVqkzz5TE6SFRm4eS7dtFj_-qhN3TGd4NR72LsaD_wmcOY4jHTnBAIROxprsPEV1xz6ivPo0FEY875NEwAaBRAHCcUPB0rTbSC-nHWRaft3sLkqwpsKRf1k5Blagl5ZaUngpBFPKqDYRvUJrfWQCILky6U2UpKZCNNzmXjRjY-ZCNN7qTJTY2et-g6zWD7b07e3N43Xc2zls-r4g_a-e2q01KpLWHzwynzJkXAAi6Hzy-yPxhMrofRk_TZF__PkdA</recordid><startdate>19981011</startdate><enddate>19981011</enddate><creator>Evans, N. W.</creator><creator>Read, J. C. A.</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19981011</creationdate><title>Stability of power-law discs — I. The Fredholm integral equation</title><author>Evans, N. W. ; Read, J. C. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4743-33a5b3c500e76b2c5c8f4a5c514a221791b555d8fee197ebbf1e2cbac0cae7113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>celestial mechanics</topic><topic>galaxies: kinematics and dynamics</topic><topic>galaxies: spiral</topic><topic>instabilities</topic><topic>methods: analytical</topic><topic>methods: numerical</topic><topic>stellar dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, N. W.</creatorcontrib><creatorcontrib>Read, J. C. A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evans, N. W.</au><au>Read, J. C. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of power-law discs — I. The Fredholm integral equation</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><date>1998-10-11</date><risdate>1998</risdate><volume>300</volume><issue>1</issue><spage>83</spage><epage>105</epage><pages>83-105</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>The power-law discs are a family of infinitesimally thin, axisymmetric stellar discs of infinite extent. The rotation curve can be rising, falling or flat. The self-consistent power-law discs are scale-free, so that all physical quantities vary as a power of radius. They possess simple equilibrium distribution functions depending on the two classical integrals, energy and angular momentum. While maintaining the scale-free equilibrium force law, the power-law discs can be transformed into cut-out discs by preventing stars close to the origin (and sometimes also at large radii) from participating in any disturbance. This paper derives the homogeneous Fredholm integral equation for the in-plane normal modes in the self-consistent and the cut-out power-law discs. This is done by linearizing the collisionless Boltzmann equation to find the response density corresponding to any imposed density and potential. The normal modes — that is, the self-consistent modes of oscillation — are found by requiring the imposed density to equal the response density. In practice, this scheme is implemented in Fourier space, by decomposing both imposed and response densities in logarithmic spirals. The Fredholm integral equation then relates the transform of the imposed density to the transform of the response density. Numerical strategies to solve the integral equation and to isolate the growth rates and the pattern speeds of the normal modes are discussed.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><doi>10.1046/j.1365-8711.1998.01863.x</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 1998-10, Vol.300 (1), p.83-105 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_miscellaneous_26783959 |
source | Wiley Online Library Journals Frontfile Complete; Oxford Journals Open Access Collection |
subjects | celestial mechanics galaxies: kinematics and dynamics galaxies: spiral instabilities methods: analytical methods: numerical stellar dynamics |
title | Stability of power-law discs — I. The Fredholm integral equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20power-law%20discs%20%E2%80%94%20I.%20The%20Fredholm%20integral%20equation&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Evans,%20N.%20W.&rft.date=1998-10-11&rft.volume=300&rft.issue=1&rft.spage=83&rft.epage=105&rft.pages=83-105&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1046/j.1365-8711.1998.01863.x&rft_dat=%3Cproquest_cross%3E26783959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26783959&rft_id=info:pmid/&rft_oup_id=10.1046/j.1365-8711.1998.01863.x&rfr_iscdi=true |