Modelling of a catalytic plate reactor for dehydrogenation–combustion coupling
Coupling an endothermic with an exothermic reaction in a plate heat exchanger having both sides of the plates covered with appropriate catalysts results in a compact and intensified unit known as catalytic plate reactor (CPR). In this work, catalytic ethane dehydrogenation taking place in a CPR havi...
Gespeichert in:
Veröffentlicht in: | Chemical engineering science 2001-04, Vol.56 (8), p.2671-2683 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2683 |
---|---|
container_issue | 8 |
container_start_page | 2671 |
container_title | Chemical engineering science |
container_volume | 56 |
creator | Zanfir, M. Gavriilidis, A. |
description | Coupling an endothermic with an exothermic reaction in a plate heat exchanger having both sides of the plates covered with appropriate catalysts results in a compact and intensified unit known as catalytic plate reactor (CPR). In this work, catalytic ethane dehydrogenation taking place in a CPR having as heat source catalytic methane combustion is modelled. Reactor behaviour is studied utilising a two-dimensional model and the influence of parameters such as catalyst loading, flowrates and wall thermal conductivity is investigated. It is shown that the ratio of catalyst loadings for the two reactions is a key variable, which must be carefully adjusted in order to avoid hot spots or insufficient reactant conversion. It is further demonstrated that hot and cold spots develop when heat generated and heat consumed are not balanced locally. Utilisation of a metallic wall makes possible efficient heat transfer between endothermic/exothermic reaction locations for small temperature differences. However, lower plate thermal conductivity can lead not only to significant radial but also to axial temperature gradients. |
doi_str_mv | 10.1016/S0009-2509(00)00522-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26782804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250900005224</els_id><sourcerecordid>26782804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-ec11c820b483cc1489a88901bad1923eea5661a23cf0f9b76eeef87343ec87323</originalsourceid><addsrcrecordid>eNqFkN1Kw0AQhRdRsFYfQQgIohfR2c3f5kqk-AcVBfV62UwmdSXN1t1E6J3v4Bv6JCZt6a0Xw2HgOzOcw9gxhwsOPL18AYA8FAnkZwDnAIkQYbzDRlxmURjHkOyy0RbZZwfef_RrlnEYsedHW1Jdm2YW2CrQAepW18vWYLCodUuBI42tdUHVT0nvy9LZGTW6Nbb5_f5BOy86PywB2m4xnDlke5WuPR1tdMzebm9eJ_fh9OnuYXI9DTHmsg0JOUcpoIhlhMhjmWspc-CFLnkuIiKdpCnXIsIKqrzIUiKq-jxxRNiLiMbsdH134exnR75Vc-Oxj6Ibsp1XIs2kkBD3YLIG0VnvHVVq4cxcu6XioIb-1Ko_NZSjANSqPzX4TjYPtEddV043aPzWnKdZlgzU1ZqiPuuXIac8GmqQSuMIW1Va88-fP05QhbY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26782804</pqid></control><display><type>article</type><title>Modelling of a catalytic plate reactor for dehydrogenation–combustion coupling</title><source>Elsevier ScienceDirect Journals</source><creator>Zanfir, M. ; Gavriilidis, A.</creator><creatorcontrib>Zanfir, M. ; Gavriilidis, A.</creatorcontrib><description>Coupling an endothermic with an exothermic reaction in a plate heat exchanger having both sides of the plates covered with appropriate catalysts results in a compact and intensified unit known as catalytic plate reactor (CPR). In this work, catalytic ethane dehydrogenation taking place in a CPR having as heat source catalytic methane combustion is modelled. Reactor behaviour is studied utilising a two-dimensional model and the influence of parameters such as catalyst loading, flowrates and wall thermal conductivity is investigated. It is shown that the ratio of catalyst loadings for the two reactions is a key variable, which must be carefully adjusted in order to avoid hot spots or insufficient reactant conversion. It is further demonstrated that hot and cold spots develop when heat generated and heat consumed are not balanced locally. Utilisation of a metallic wall makes possible efficient heat transfer between endothermic/exothermic reaction locations for small temperature differences. However, lower plate thermal conductivity can lead not only to significant radial but also to axial temperature gradients.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/S0009-2509(00)00522-4</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Catalytic combustion ; Catalytic plate reactors ; Chemical engineering ; Ethane dehydrogenation ; Exact sciences and technology ; Process intensification ; Reactors</subject><ispartof>Chemical engineering science, 2001-04, Vol.56 (8), p.2671-2683</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-ec11c820b483cc1489a88901bad1923eea5661a23cf0f9b76eeef87343ec87323</citedby><cites>FETCH-LOGICAL-c418t-ec11c820b483cc1489a88901bad1923eea5661a23cf0f9b76eeef87343ec87323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0009-2509(00)00522-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=967754$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zanfir, M.</creatorcontrib><creatorcontrib>Gavriilidis, A.</creatorcontrib><title>Modelling of a catalytic plate reactor for dehydrogenation–combustion coupling</title><title>Chemical engineering science</title><description>Coupling an endothermic with an exothermic reaction in a plate heat exchanger having both sides of the plates covered with appropriate catalysts results in a compact and intensified unit known as catalytic plate reactor (CPR). In this work, catalytic ethane dehydrogenation taking place in a CPR having as heat source catalytic methane combustion is modelled. Reactor behaviour is studied utilising a two-dimensional model and the influence of parameters such as catalyst loading, flowrates and wall thermal conductivity is investigated. It is shown that the ratio of catalyst loadings for the two reactions is a key variable, which must be carefully adjusted in order to avoid hot spots or insufficient reactant conversion. It is further demonstrated that hot and cold spots develop when heat generated and heat consumed are not balanced locally. Utilisation of a metallic wall makes possible efficient heat transfer between endothermic/exothermic reaction locations for small temperature differences. However, lower plate thermal conductivity can lead not only to significant radial but also to axial temperature gradients.</description><subject>Applied sciences</subject><subject>Catalytic combustion</subject><subject>Catalytic plate reactors</subject><subject>Chemical engineering</subject><subject>Ethane dehydrogenation</subject><subject>Exact sciences and technology</subject><subject>Process intensification</subject><subject>Reactors</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkN1Kw0AQhRdRsFYfQQgIohfR2c3f5kqk-AcVBfV62UwmdSXN1t1E6J3v4Bv6JCZt6a0Xw2HgOzOcw9gxhwsOPL18AYA8FAnkZwDnAIkQYbzDRlxmURjHkOyy0RbZZwfef_RrlnEYsedHW1Jdm2YW2CrQAepW18vWYLCodUuBI42tdUHVT0nvy9LZGTW6Nbb5_f5BOy86PywB2m4xnDlke5WuPR1tdMzebm9eJ_fh9OnuYXI9DTHmsg0JOUcpoIhlhMhjmWspc-CFLnkuIiKdpCnXIsIKqrzIUiKq-jxxRNiLiMbsdH134exnR75Vc-Oxj6Ibsp1XIs2kkBD3YLIG0VnvHVVq4cxcu6XioIb-1Ko_NZSjANSqPzX4TjYPtEddV043aPzWnKdZlgzU1ZqiPuuXIac8GmqQSuMIW1Va88-fP05QhbY</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>Zanfir, M.</creator><creator>Gavriilidis, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010401</creationdate><title>Modelling of a catalytic plate reactor for dehydrogenation–combustion coupling</title><author>Zanfir, M. ; Gavriilidis, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-ec11c820b483cc1489a88901bad1923eea5661a23cf0f9b76eeef87343ec87323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Catalytic combustion</topic><topic>Catalytic plate reactors</topic><topic>Chemical engineering</topic><topic>Ethane dehydrogenation</topic><topic>Exact sciences and technology</topic><topic>Process intensification</topic><topic>Reactors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zanfir, M.</creatorcontrib><creatorcontrib>Gavriilidis, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zanfir, M.</au><au>Gavriilidis, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of a catalytic plate reactor for dehydrogenation–combustion coupling</atitle><jtitle>Chemical engineering science</jtitle><date>2001-04-01</date><risdate>2001</risdate><volume>56</volume><issue>8</issue><spage>2671</spage><epage>2683</epage><pages>2671-2683</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>Coupling an endothermic with an exothermic reaction in a plate heat exchanger having both sides of the plates covered with appropriate catalysts results in a compact and intensified unit known as catalytic plate reactor (CPR). In this work, catalytic ethane dehydrogenation taking place in a CPR having as heat source catalytic methane combustion is modelled. Reactor behaviour is studied utilising a two-dimensional model and the influence of parameters such as catalyst loading, flowrates and wall thermal conductivity is investigated. It is shown that the ratio of catalyst loadings for the two reactions is a key variable, which must be carefully adjusted in order to avoid hot spots or insufficient reactant conversion. It is further demonstrated that hot and cold spots develop when heat generated and heat consumed are not balanced locally. Utilisation of a metallic wall makes possible efficient heat transfer between endothermic/exothermic reaction locations for small temperature differences. However, lower plate thermal conductivity can lead not only to significant radial but also to axial temperature gradients.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0009-2509(00)00522-4</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2509 |
ispartof | Chemical engineering science, 2001-04, Vol.56 (8), p.2671-2683 |
issn | 0009-2509 1873-4405 |
language | eng |
recordid | cdi_proquest_miscellaneous_26782804 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Catalytic combustion Catalytic plate reactors Chemical engineering Ethane dehydrogenation Exact sciences and technology Process intensification Reactors |
title | Modelling of a catalytic plate reactor for dehydrogenation–combustion coupling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20a%20catalytic%20plate%20reactor%20for%20dehydrogenation%E2%80%93combustion%20coupling&rft.jtitle=Chemical%20engineering%20science&rft.au=Zanfir,%20M.&rft.date=2001-04-01&rft.volume=56&rft.issue=8&rft.spage=2671&rft.epage=2683&rft.pages=2671-2683&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/S0009-2509(00)00522-4&rft_dat=%3Cproquest_cross%3E26782804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26782804&rft_id=info:pmid/&rft_els_id=S0009250900005224&rfr_iscdi=true |