Modelling of a catalytic plate reactor for dehydrogenation–combustion coupling

Coupling an endothermic with an exothermic reaction in a plate heat exchanger having both sides of the plates covered with appropriate catalysts results in a compact and intensified unit known as catalytic plate reactor (CPR). In this work, catalytic ethane dehydrogenation taking place in a CPR havi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2001-04, Vol.56 (8), p.2671-2683
Hauptverfasser: Zanfir, M., Gavriilidis, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2683
container_issue 8
container_start_page 2671
container_title Chemical engineering science
container_volume 56
creator Zanfir, M.
Gavriilidis, A.
description Coupling an endothermic with an exothermic reaction in a plate heat exchanger having both sides of the plates covered with appropriate catalysts results in a compact and intensified unit known as catalytic plate reactor (CPR). In this work, catalytic ethane dehydrogenation taking place in a CPR having as heat source catalytic methane combustion is modelled. Reactor behaviour is studied utilising a two-dimensional model and the influence of parameters such as catalyst loading, flowrates and wall thermal conductivity is investigated. It is shown that the ratio of catalyst loadings for the two reactions is a key variable, which must be carefully adjusted in order to avoid hot spots or insufficient reactant conversion. It is further demonstrated that hot and cold spots develop when heat generated and heat consumed are not balanced locally. Utilisation of a metallic wall makes possible efficient heat transfer between endothermic/exothermic reaction locations for small temperature differences. However, lower plate thermal conductivity can lead not only to significant radial but also to axial temperature gradients.
doi_str_mv 10.1016/S0009-2509(00)00522-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26782804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250900005224</els_id><sourcerecordid>26782804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-ec11c820b483cc1489a88901bad1923eea5661a23cf0f9b76eeef87343ec87323</originalsourceid><addsrcrecordid>eNqFkN1Kw0AQhRdRsFYfQQgIohfR2c3f5kqk-AcVBfV62UwmdSXN1t1E6J3v4Bv6JCZt6a0Xw2HgOzOcw9gxhwsOPL18AYA8FAnkZwDnAIkQYbzDRlxmURjHkOyy0RbZZwfef_RrlnEYsedHW1Jdm2YW2CrQAepW18vWYLCodUuBI42tdUHVT0nvy9LZGTW6Nbb5_f5BOy86PywB2m4xnDlke5WuPR1tdMzebm9eJ_fh9OnuYXI9DTHmsg0JOUcpoIhlhMhjmWspc-CFLnkuIiKdpCnXIsIKqrzIUiKq-jxxRNiLiMbsdH134exnR75Vc-Oxj6Ibsp1XIs2kkBD3YLIG0VnvHVVq4cxcu6XioIb-1Ko_NZSjANSqPzX4TjYPtEddV043aPzWnKdZlgzU1ZqiPuuXIac8GmqQSuMIW1Va88-fP05QhbY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26782804</pqid></control><display><type>article</type><title>Modelling of a catalytic plate reactor for dehydrogenation–combustion coupling</title><source>Elsevier ScienceDirect Journals</source><creator>Zanfir, M. ; Gavriilidis, A.</creator><creatorcontrib>Zanfir, M. ; Gavriilidis, A.</creatorcontrib><description>Coupling an endothermic with an exothermic reaction in a plate heat exchanger having both sides of the plates covered with appropriate catalysts results in a compact and intensified unit known as catalytic plate reactor (CPR). In this work, catalytic ethane dehydrogenation taking place in a CPR having as heat source catalytic methane combustion is modelled. Reactor behaviour is studied utilising a two-dimensional model and the influence of parameters such as catalyst loading, flowrates and wall thermal conductivity is investigated. It is shown that the ratio of catalyst loadings for the two reactions is a key variable, which must be carefully adjusted in order to avoid hot spots or insufficient reactant conversion. It is further demonstrated that hot and cold spots develop when heat generated and heat consumed are not balanced locally. Utilisation of a metallic wall makes possible efficient heat transfer between endothermic/exothermic reaction locations for small temperature differences. However, lower plate thermal conductivity can lead not only to significant radial but also to axial temperature gradients.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/S0009-2509(00)00522-4</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Catalytic combustion ; Catalytic plate reactors ; Chemical engineering ; Ethane dehydrogenation ; Exact sciences and technology ; Process intensification ; Reactors</subject><ispartof>Chemical engineering science, 2001-04, Vol.56 (8), p.2671-2683</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-ec11c820b483cc1489a88901bad1923eea5661a23cf0f9b76eeef87343ec87323</citedby><cites>FETCH-LOGICAL-c418t-ec11c820b483cc1489a88901bad1923eea5661a23cf0f9b76eeef87343ec87323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0009-2509(00)00522-4$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=967754$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zanfir, M.</creatorcontrib><creatorcontrib>Gavriilidis, A.</creatorcontrib><title>Modelling of a catalytic plate reactor for dehydrogenation–combustion coupling</title><title>Chemical engineering science</title><description>Coupling an endothermic with an exothermic reaction in a plate heat exchanger having both sides of the plates covered with appropriate catalysts results in a compact and intensified unit known as catalytic plate reactor (CPR). In this work, catalytic ethane dehydrogenation taking place in a CPR having as heat source catalytic methane combustion is modelled. Reactor behaviour is studied utilising a two-dimensional model and the influence of parameters such as catalyst loading, flowrates and wall thermal conductivity is investigated. It is shown that the ratio of catalyst loadings for the two reactions is a key variable, which must be carefully adjusted in order to avoid hot spots or insufficient reactant conversion. It is further demonstrated that hot and cold spots develop when heat generated and heat consumed are not balanced locally. Utilisation of a metallic wall makes possible efficient heat transfer between endothermic/exothermic reaction locations for small temperature differences. However, lower plate thermal conductivity can lead not only to significant radial but also to axial temperature gradients.</description><subject>Applied sciences</subject><subject>Catalytic combustion</subject><subject>Catalytic plate reactors</subject><subject>Chemical engineering</subject><subject>Ethane dehydrogenation</subject><subject>Exact sciences and technology</subject><subject>Process intensification</subject><subject>Reactors</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkN1Kw0AQhRdRsFYfQQgIohfR2c3f5kqk-AcVBfV62UwmdSXN1t1E6J3v4Bv6JCZt6a0Xw2HgOzOcw9gxhwsOPL18AYA8FAnkZwDnAIkQYbzDRlxmURjHkOyy0RbZZwfef_RrlnEYsedHW1Jdm2YW2CrQAepW18vWYLCodUuBI42tdUHVT0nvy9LZGTW6Nbb5_f5BOy86PywB2m4xnDlke5WuPR1tdMzebm9eJ_fh9OnuYXI9DTHmsg0JOUcpoIhlhMhjmWspc-CFLnkuIiKdpCnXIsIKqrzIUiKq-jxxRNiLiMbsdH134exnR75Vc-Oxj6Ibsp1XIs2kkBD3YLIG0VnvHVVq4cxcu6XioIb-1Ko_NZSjANSqPzX4TjYPtEddV043aPzWnKdZlgzU1ZqiPuuXIac8GmqQSuMIW1Va88-fP05QhbY</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>Zanfir, M.</creator><creator>Gavriilidis, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010401</creationdate><title>Modelling of a catalytic plate reactor for dehydrogenation–combustion coupling</title><author>Zanfir, M. ; Gavriilidis, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-ec11c820b483cc1489a88901bad1923eea5661a23cf0f9b76eeef87343ec87323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Catalytic combustion</topic><topic>Catalytic plate reactors</topic><topic>Chemical engineering</topic><topic>Ethane dehydrogenation</topic><topic>Exact sciences and technology</topic><topic>Process intensification</topic><topic>Reactors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zanfir, M.</creatorcontrib><creatorcontrib>Gavriilidis, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zanfir, M.</au><au>Gavriilidis, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of a catalytic plate reactor for dehydrogenation–combustion coupling</atitle><jtitle>Chemical engineering science</jtitle><date>2001-04-01</date><risdate>2001</risdate><volume>56</volume><issue>8</issue><spage>2671</spage><epage>2683</epage><pages>2671-2683</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>Coupling an endothermic with an exothermic reaction in a plate heat exchanger having both sides of the plates covered with appropriate catalysts results in a compact and intensified unit known as catalytic plate reactor (CPR). In this work, catalytic ethane dehydrogenation taking place in a CPR having as heat source catalytic methane combustion is modelled. Reactor behaviour is studied utilising a two-dimensional model and the influence of parameters such as catalyst loading, flowrates and wall thermal conductivity is investigated. It is shown that the ratio of catalyst loadings for the two reactions is a key variable, which must be carefully adjusted in order to avoid hot spots or insufficient reactant conversion. It is further demonstrated that hot and cold spots develop when heat generated and heat consumed are not balanced locally. Utilisation of a metallic wall makes possible efficient heat transfer between endothermic/exothermic reaction locations for small temperature differences. However, lower plate thermal conductivity can lead not only to significant radial but also to axial temperature gradients.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0009-2509(00)00522-4</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2001-04, Vol.56 (8), p.2671-2683
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_26782804
source Elsevier ScienceDirect Journals
subjects Applied sciences
Catalytic combustion
Catalytic plate reactors
Chemical engineering
Ethane dehydrogenation
Exact sciences and technology
Process intensification
Reactors
title Modelling of a catalytic plate reactor for dehydrogenation–combustion coupling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20a%20catalytic%20plate%20reactor%20for%20dehydrogenation%E2%80%93combustion%20coupling&rft.jtitle=Chemical%20engineering%20science&rft.au=Zanfir,%20M.&rft.date=2001-04-01&rft.volume=56&rft.issue=8&rft.spage=2671&rft.epage=2683&rft.pages=2671-2683&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/S0009-2509(00)00522-4&rft_dat=%3Cproquest_cross%3E26782804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26782804&rft_id=info:pmid/&rft_els_id=S0009250900005224&rfr_iscdi=true