Microstructural factors of low cycle fatigue damage in two phase Al–Si alloys

Low cycle fatigue (LCF) tests in air have been carried out on smooth specimens of several model binary Al–Si alloys with microstructures characterised by a high degree of homogeneity and the absence of casting defects, owing to the processing involving directed solidification. The elementary damage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2001-02, Vol.299 (1), p.275-286
Hauptverfasser: Stolarz, Jacques, Madelaine-Dupuich, Olivier, Magnin, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue 1
container_start_page 275
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 299
creator Stolarz, Jacques
Madelaine-Dupuich, Olivier
Magnin, Thierry
description Low cycle fatigue (LCF) tests in air have been carried out on smooth specimens of several model binary Al–Si alloys with microstructures characterised by a high degree of homogeneity and the absence of casting defects, owing to the processing involving directed solidification. The elementary damage events, namely short crack nucleation at Al–Si interfaces and propagation across microstructural barriers (layers of eutectic Al), have been identified. The microstructure dependent fatigue damage evolves through single or multiple cracking, with significantly longer fatigue lives in the second case. The microstructural parameter responsible for the activation of one of two observed damage modes has been identified and quantified. This parameter is related to the maximal linear extension of Si particles at the surface and to the distance between Si particles, rather than to the average parameters given by conventional image analysis. The validity of this approach is enhanced by extending an existing model of tensile fracture in Al–Si–Fe alloys to the case of low cycle fatigue.
doi_str_mv 10.1016/S0921-5093(00)01428-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26778426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509300014283</els_id><sourcerecordid>26778426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-acd5866ebb7686959414a0960851a22640f74a5a058ca1270b069dcaef8bfafb3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWC-PIAQE0cXoyVwymZWU4g0qXajrcCaTaCRtajKjdOc7-IY-idML3bo6cPj-83M-Qk4YXDJg_OoJqpQlBVTZOcAFsDwVSbZDBkyUWZJXGd8lgy2yTw5ifAfoMSgGZPJoVfCxDZ1qu4COGlStD5F6Q53_omqhnO6XrX3tNG1wiq-a2hltvzydv2HUdOh-v3-eLEXn_CIekT2DLurjzTwkL7c3z6P7ZDy5exgNx4nKOG8TVE0hONd1XXLBq6LKWY5QcRAFwzTlOZgyxwKhEApZWkINvGoUaiNqg6bODsnZ-u48-I9Ox1ZObVTaOZxp30WZ8rIUecp7sFiDyzdj0EbOg51iWEgGcqlPrvTJpRsJIFf6ZNbnTjcFGBU6E3CmbNyGRcZ4uqSu15Tuf_20OsiorJ4p3digVSsbb__p-QOCQYRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26778426</pqid></control><display><type>article</type><title>Microstructural factors of low cycle fatigue damage in two phase Al–Si alloys</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Stolarz, Jacques ; Madelaine-Dupuich, Olivier ; Magnin, Thierry</creator><creatorcontrib>Stolarz, Jacques ; Madelaine-Dupuich, Olivier ; Magnin, Thierry</creatorcontrib><description>Low cycle fatigue (LCF) tests in air have been carried out on smooth specimens of several model binary Al–Si alloys with microstructures characterised by a high degree of homogeneity and the absence of casting defects, owing to the processing involving directed solidification. The elementary damage events, namely short crack nucleation at Al–Si interfaces and propagation across microstructural barriers (layers of eutectic Al), have been identified. The microstructure dependent fatigue damage evolves through single or multiple cracking, with significantly longer fatigue lives in the second case. The microstructural parameter responsible for the activation of one of two observed damage modes has been identified and quantified. This parameter is related to the maximal linear extension of Si particles at the surface and to the distance between Si particles, rather than to the average parameters given by conventional image analysis. The validity of this approach is enhanced by extending an existing model of tensile fracture in Al–Si–Fe alloys to the case of low cycle fatigue.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/S0921-5093(00)01428-3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Al–Si alloys ; Applied sciences ; Crack nucleation ; Exact sciences and technology ; Fatigue ; Fractures ; Low cycle fatigue ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Multicracking ; Short cracks</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2001-02, Vol.299 (1), p.275-286</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-acd5866ebb7686959414a0960851a22640f74a5a058ca1270b069dcaef8bfafb3</citedby><cites>FETCH-LOGICAL-c366t-acd5866ebb7686959414a0960851a22640f74a5a058ca1270b069dcaef8bfafb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0921-5093(00)01428-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=831623$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stolarz, Jacques</creatorcontrib><creatorcontrib>Madelaine-Dupuich, Olivier</creatorcontrib><creatorcontrib>Magnin, Thierry</creatorcontrib><title>Microstructural factors of low cycle fatigue damage in two phase Al–Si alloys</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Low cycle fatigue (LCF) tests in air have been carried out on smooth specimens of several model binary Al–Si alloys with microstructures characterised by a high degree of homogeneity and the absence of casting defects, owing to the processing involving directed solidification. The elementary damage events, namely short crack nucleation at Al–Si interfaces and propagation across microstructural barriers (layers of eutectic Al), have been identified. The microstructure dependent fatigue damage evolves through single or multiple cracking, with significantly longer fatigue lives in the second case. The microstructural parameter responsible for the activation of one of two observed damage modes has been identified and quantified. This parameter is related to the maximal linear extension of Si particles at the surface and to the distance between Si particles, rather than to the average parameters given by conventional image analysis. The validity of this approach is enhanced by extending an existing model of tensile fracture in Al–Si–Fe alloys to the case of low cycle fatigue.</description><subject>Al–Si alloys</subject><subject>Applied sciences</subject><subject>Crack nucleation</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fractures</subject><subject>Low cycle fatigue</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Multicracking</subject><subject>Short cracks</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWC-PIAQE0cXoyVwymZWU4g0qXajrcCaTaCRtajKjdOc7-IY-idML3bo6cPj-83M-Qk4YXDJg_OoJqpQlBVTZOcAFsDwVSbZDBkyUWZJXGd8lgy2yTw5ifAfoMSgGZPJoVfCxDZ1qu4COGlStD5F6Q53_omqhnO6XrX3tNG1wiq-a2hltvzydv2HUdOh-v3-eLEXn_CIekT2DLurjzTwkL7c3z6P7ZDy5exgNx4nKOG8TVE0hONd1XXLBq6LKWY5QcRAFwzTlOZgyxwKhEApZWkINvGoUaiNqg6bODsnZ-u48-I9Ox1ZObVTaOZxp30WZ8rIUecp7sFiDyzdj0EbOg51iWEgGcqlPrvTJpRsJIFf6ZNbnTjcFGBU6E3CmbNyGRcZ4uqSu15Tuf_20OsiorJ4p3digVSsbb__p-QOCQYRk</recordid><startdate>20010215</startdate><enddate>20010215</enddate><creator>Stolarz, Jacques</creator><creator>Madelaine-Dupuich, Olivier</creator><creator>Magnin, Thierry</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20010215</creationdate><title>Microstructural factors of low cycle fatigue damage in two phase Al–Si alloys</title><author>Stolarz, Jacques ; Madelaine-Dupuich, Olivier ; Magnin, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-acd5866ebb7686959414a0960851a22640f74a5a058ca1270b069dcaef8bfafb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Al–Si alloys</topic><topic>Applied sciences</topic><topic>Crack nucleation</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fractures</topic><topic>Low cycle fatigue</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Multicracking</topic><topic>Short cracks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stolarz, Jacques</creatorcontrib><creatorcontrib>Madelaine-Dupuich, Olivier</creatorcontrib><creatorcontrib>Magnin, Thierry</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stolarz, Jacques</au><au>Madelaine-Dupuich, Olivier</au><au>Magnin, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural factors of low cycle fatigue damage in two phase Al–Si alloys</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2001-02-15</date><risdate>2001</risdate><volume>299</volume><issue>1</issue><spage>275</spage><epage>286</epage><pages>275-286</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Low cycle fatigue (LCF) tests in air have been carried out on smooth specimens of several model binary Al–Si alloys with microstructures characterised by a high degree of homogeneity and the absence of casting defects, owing to the processing involving directed solidification. The elementary damage events, namely short crack nucleation at Al–Si interfaces and propagation across microstructural barriers (layers of eutectic Al), have been identified. The microstructure dependent fatigue damage evolves through single or multiple cracking, with significantly longer fatigue lives in the second case. The microstructural parameter responsible for the activation of one of two observed damage modes has been identified and quantified. This parameter is related to the maximal linear extension of Si particles at the surface and to the distance between Si particles, rather than to the average parameters given by conventional image analysis. The validity of this approach is enhanced by extending an existing model of tensile fracture in Al–Si–Fe alloys to the case of low cycle fatigue.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0921-5093(00)01428-3</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2001-02, Vol.299 (1), p.275-286
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_26778426
source Elsevier ScienceDirect Journals Complete
subjects Al–Si alloys
Applied sciences
Crack nucleation
Exact sciences and technology
Fatigue
Fractures
Low cycle fatigue
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Multicracking
Short cracks
title Microstructural factors of low cycle fatigue damage in two phase Al–Si alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20factors%20of%20low%20cycle%20fatigue%20damage%20in%20two%20phase%20Al%E2%80%93Si%20alloys&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Stolarz,%20Jacques&rft.date=2001-02-15&rft.volume=299&rft.issue=1&rft.spage=275&rft.epage=286&rft.pages=275-286&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/S0921-5093(00)01428-3&rft_dat=%3Cproquest_cross%3E26778426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26778426&rft_id=info:pmid/&rft_els_id=S0921509300014283&rfr_iscdi=true