Microstructural factors of low cycle fatigue damage in two phase Al–Si alloys
Low cycle fatigue (LCF) tests in air have been carried out on smooth specimens of several model binary Al–Si alloys with microstructures characterised by a high degree of homogeneity and the absence of casting defects, owing to the processing involving directed solidification. The elementary damage...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2001-02, Vol.299 (1), p.275-286 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 286 |
---|---|
container_issue | 1 |
container_start_page | 275 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 299 |
creator | Stolarz, Jacques Madelaine-Dupuich, Olivier Magnin, Thierry |
description | Low cycle fatigue (LCF) tests in air have been carried out on smooth specimens of several model binary Al–Si alloys with microstructures characterised by a high degree of homogeneity and the absence of casting defects, owing to the processing involving directed solidification. The elementary damage events, namely short crack nucleation at Al–Si interfaces and propagation across microstructural barriers (layers of eutectic Al), have been identified. The microstructure dependent fatigue damage evolves through single or multiple cracking, with significantly longer fatigue lives in the second case. The microstructural parameter responsible for the activation of one of two observed damage modes has been identified and quantified. This parameter is related to the maximal linear extension of Si particles at the surface and to the distance between Si particles, rather than to the average parameters given by conventional image analysis. The validity of this approach is enhanced by extending an existing model of tensile fracture in Al–Si–Fe alloys to the case of low cycle fatigue. |
doi_str_mv | 10.1016/S0921-5093(00)01428-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26778426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509300014283</els_id><sourcerecordid>26778426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-acd5866ebb7686959414a0960851a22640f74a5a058ca1270b069dcaef8bfafb3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWC-PIAQE0cXoyVwymZWU4g0qXajrcCaTaCRtajKjdOc7-IY-idML3bo6cPj-83M-Qk4YXDJg_OoJqpQlBVTZOcAFsDwVSbZDBkyUWZJXGd8lgy2yTw5ifAfoMSgGZPJoVfCxDZ1qu4COGlStD5F6Q53_omqhnO6XrX3tNG1wiq-a2hltvzydv2HUdOh-v3-eLEXn_CIekT2DLurjzTwkL7c3z6P7ZDy5exgNx4nKOG8TVE0hONd1XXLBq6LKWY5QcRAFwzTlOZgyxwKhEApZWkINvGoUaiNqg6bODsnZ-u48-I9Ox1ZObVTaOZxp30WZ8rIUecp7sFiDyzdj0EbOg51iWEgGcqlPrvTJpRsJIFf6ZNbnTjcFGBU6E3CmbNyGRcZ4uqSu15Tuf_20OsiorJ4p3digVSsbb__p-QOCQYRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26778426</pqid></control><display><type>article</type><title>Microstructural factors of low cycle fatigue damage in two phase Al–Si alloys</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Stolarz, Jacques ; Madelaine-Dupuich, Olivier ; Magnin, Thierry</creator><creatorcontrib>Stolarz, Jacques ; Madelaine-Dupuich, Olivier ; Magnin, Thierry</creatorcontrib><description>Low cycle fatigue (LCF) tests in air have been carried out on smooth specimens of several model binary Al–Si alloys with microstructures characterised by a high degree of homogeneity and the absence of casting defects, owing to the processing involving directed solidification. The elementary damage events, namely short crack nucleation at Al–Si interfaces and propagation across microstructural barriers (layers of eutectic Al), have been identified. The microstructure dependent fatigue damage evolves through single or multiple cracking, with significantly longer fatigue lives in the second case. The microstructural parameter responsible for the activation of one of two observed damage modes has been identified and quantified. This parameter is related to the maximal linear extension of Si particles at the surface and to the distance between Si particles, rather than to the average parameters given by conventional image analysis. The validity of this approach is enhanced by extending an existing model of tensile fracture in Al–Si–Fe alloys to the case of low cycle fatigue.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/S0921-5093(00)01428-3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Al–Si alloys ; Applied sciences ; Crack nucleation ; Exact sciences and technology ; Fatigue ; Fractures ; Low cycle fatigue ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Multicracking ; Short cracks</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2001-02, Vol.299 (1), p.275-286</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-acd5866ebb7686959414a0960851a22640f74a5a058ca1270b069dcaef8bfafb3</citedby><cites>FETCH-LOGICAL-c366t-acd5866ebb7686959414a0960851a22640f74a5a058ca1270b069dcaef8bfafb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0921-5093(00)01428-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=831623$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stolarz, Jacques</creatorcontrib><creatorcontrib>Madelaine-Dupuich, Olivier</creatorcontrib><creatorcontrib>Magnin, Thierry</creatorcontrib><title>Microstructural factors of low cycle fatigue damage in two phase Al–Si alloys</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Low cycle fatigue (LCF) tests in air have been carried out on smooth specimens of several model binary Al–Si alloys with microstructures characterised by a high degree of homogeneity and the absence of casting defects, owing to the processing involving directed solidification. The elementary damage events, namely short crack nucleation at Al–Si interfaces and propagation across microstructural barriers (layers of eutectic Al), have been identified. The microstructure dependent fatigue damage evolves through single or multiple cracking, with significantly longer fatigue lives in the second case. The microstructural parameter responsible for the activation of one of two observed damage modes has been identified and quantified. This parameter is related to the maximal linear extension of Si particles at the surface and to the distance between Si particles, rather than to the average parameters given by conventional image analysis. The validity of this approach is enhanced by extending an existing model of tensile fracture in Al–Si–Fe alloys to the case of low cycle fatigue.</description><subject>Al–Si alloys</subject><subject>Applied sciences</subject><subject>Crack nucleation</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fractures</subject><subject>Low cycle fatigue</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Multicracking</subject><subject>Short cracks</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWC-PIAQE0cXoyVwymZWU4g0qXajrcCaTaCRtajKjdOc7-IY-idML3bo6cPj-83M-Qk4YXDJg_OoJqpQlBVTZOcAFsDwVSbZDBkyUWZJXGd8lgy2yTw5ifAfoMSgGZPJoVfCxDZ1qu4COGlStD5F6Q53_omqhnO6XrX3tNG1wiq-a2hltvzydv2HUdOh-v3-eLEXn_CIekT2DLurjzTwkL7c3z6P7ZDy5exgNx4nKOG8TVE0hONd1XXLBq6LKWY5QcRAFwzTlOZgyxwKhEApZWkINvGoUaiNqg6bODsnZ-u48-I9Ox1ZObVTaOZxp30WZ8rIUecp7sFiDyzdj0EbOg51iWEgGcqlPrvTJpRsJIFf6ZNbnTjcFGBU6E3CmbNyGRcZ4uqSu15Tuf_20OsiorJ4p3digVSsbb__p-QOCQYRk</recordid><startdate>20010215</startdate><enddate>20010215</enddate><creator>Stolarz, Jacques</creator><creator>Madelaine-Dupuich, Olivier</creator><creator>Magnin, Thierry</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20010215</creationdate><title>Microstructural factors of low cycle fatigue damage in two phase Al–Si alloys</title><author>Stolarz, Jacques ; Madelaine-Dupuich, Olivier ; Magnin, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-acd5866ebb7686959414a0960851a22640f74a5a058ca1270b069dcaef8bfafb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Al–Si alloys</topic><topic>Applied sciences</topic><topic>Crack nucleation</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fractures</topic><topic>Low cycle fatigue</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Multicracking</topic><topic>Short cracks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stolarz, Jacques</creatorcontrib><creatorcontrib>Madelaine-Dupuich, Olivier</creatorcontrib><creatorcontrib>Magnin, Thierry</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stolarz, Jacques</au><au>Madelaine-Dupuich, Olivier</au><au>Magnin, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural factors of low cycle fatigue damage in two phase Al–Si alloys</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2001-02-15</date><risdate>2001</risdate><volume>299</volume><issue>1</issue><spage>275</spage><epage>286</epage><pages>275-286</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Low cycle fatigue (LCF) tests in air have been carried out on smooth specimens of several model binary Al–Si alloys with microstructures characterised by a high degree of homogeneity and the absence of casting defects, owing to the processing involving directed solidification. The elementary damage events, namely short crack nucleation at Al–Si interfaces and propagation across microstructural barriers (layers of eutectic Al), have been identified. The microstructure dependent fatigue damage evolves through single or multiple cracking, with significantly longer fatigue lives in the second case. The microstructural parameter responsible for the activation of one of two observed damage modes has been identified and quantified. This parameter is related to the maximal linear extension of Si particles at the surface and to the distance between Si particles, rather than to the average parameters given by conventional image analysis. The validity of this approach is enhanced by extending an existing model of tensile fracture in Al–Si–Fe alloys to the case of low cycle fatigue.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0921-5093(00)01428-3</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2001-02, Vol.299 (1), p.275-286 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_26778426 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Al–Si alloys Applied sciences Crack nucleation Exact sciences and technology Fatigue Fractures Low cycle fatigue Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Multicracking Short cracks |
title | Microstructural factors of low cycle fatigue damage in two phase Al–Si alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20factors%20of%20low%20cycle%20fatigue%20damage%20in%20two%20phase%20Al%E2%80%93Si%20alloys&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Stolarz,%20Jacques&rft.date=2001-02-15&rft.volume=299&rft.issue=1&rft.spage=275&rft.epage=286&rft.pages=275-286&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/S0921-5093(00)01428-3&rft_dat=%3Cproquest_cross%3E26778426%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26778426&rft_id=info:pmid/&rft_els_id=S0921509300014283&rfr_iscdi=true |