Predictive equations for fat mass in older Hispanic adults with excess adiposity using the 4‐compartment model as a reference method

Background Predictive equations are the best option for assessing fat mass in clinical practice due to their low cost and practicality. However, several factors, such as age, excess adiposity, and ethnicity can compromise the accuracy of the equations reported to date in the literature. Objective To...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of clinical nutrition 2023-05, Vol.77 (5), p.515-524
Hauptverfasser: González-Arellanes, Rogelio, Urquidez-Romero, Rene, Rodríguez-Tadeo, Alejandra, Esparza-Romero, Julián, Méndez-Estrada, Rosa Olivia, Ramírez-López, Erik, Robles-Sardin, Alma-Elizabeth, Pacheco-Moreno, Bertha-Isabel, Alemán-Mateo, Heliodoro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 524
container_issue 5
container_start_page 515
container_title European journal of clinical nutrition
container_volume 77
creator González-Arellanes, Rogelio
Urquidez-Romero, Rene
Rodríguez-Tadeo, Alejandra
Esparza-Romero, Julián
Méndez-Estrada, Rosa Olivia
Ramírez-López, Erik
Robles-Sardin, Alma-Elizabeth
Pacheco-Moreno, Bertha-Isabel
Alemán-Mateo, Heliodoro
description Background Predictive equations are the best option for assessing fat mass in clinical practice due to their low cost and practicality. However, several factors, such as age, excess adiposity, and ethnicity can compromise the accuracy of the equations reported to date in the literature. Objective To develop and validate two predictive equations for estimating fat mass: one based exclusively on anthropometric variables, the other combining anthropometric and bioelectrical impedance variables using the 4C model as the reference method. Subjects/Methods This is a cross-sectional study that included 386 Hispanic subjects aged ≥60 with excess adiposity. Fat mass and fat-free mass were measured by the 4C model as predictive variables. Age, sex, and certain anthropometric and bioelectrical impedance data were considered as potential predictor variables. To develop and to validate the equations, the multiple linear regression analysis, and cross-validation protocol were applied. Results Equation 1 included weight, sex, and BMI as predictor variables, while equation 2 considered sex, weight, height squared/resistance, and resistance as predictor variables. R 2 and RMSE values were ≥0.79 and ≤3.45, respectively, in both equations. The differences in estimates of fat mass by equations 1 and 2 were 0.34 kg and −0.25 kg, respectively, compared to the 4C model. This bias was not significant ( p  
doi_str_mv 10.1038/s41430-022-01171-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2677573046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811395271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-35dba7925f237431a8b5efa681a5b61dad59d88e22d55910ac66277a06849953</originalsourceid><addsrcrecordid>eNp9kb9uFDEQhy0EIkfgBSiQJRqaJf7v3RJFQJAikSK95bNnc4527Y3t5UhHRc0z8iQ4XAApBdUU881vZvQh9JKSt5Tw_qQIKjjpCGMdoVTTbv8IbajQqpNKkMdoQwYpOk6IPkLPSrkmpDU1e4qOuNRE9lJv0PeLDD64Gr4AhpvV1pBiwWPKeLQVz7YUHCJOk4eMz0JZbAwOW79OteB9qDsMXx00yPqwpBLqLV5LiFe47gCLn99-uDQvNtcZYktLHiZsG4wzjJAhOsAz1F3yz9GT0U4FXtzXY3T54f3l6Vl3_vnjp9N3553jRNaOS7-1emByZFwLTm2_lTBa1VMrt4p66-Xg-x4Y81IOlFinFNPaEtWLYZD8GL05xC453axQqplDcTBNNkJai2FKa6k5Eaqhrx-g12nNsR1nWE8pHyTTtFHsQLmcSmlfmSWH2eZbQ4m5k2QOkkyTZH5LMvs29Oo-et3O4P-O_LHSAH4ASmvFK8j_dv8n9hf3I58i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811395271</pqid></control><display><type>article</type><title>Predictive equations for fat mass in older Hispanic adults with excess adiposity using the 4‐compartment model as a reference method</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>González-Arellanes, Rogelio ; Urquidez-Romero, Rene ; Rodríguez-Tadeo, Alejandra ; Esparza-Romero, Julián ; Méndez-Estrada, Rosa Olivia ; Ramírez-López, Erik ; Robles-Sardin, Alma-Elizabeth ; Pacheco-Moreno, Bertha-Isabel ; Alemán-Mateo, Heliodoro</creator><creatorcontrib>González-Arellanes, Rogelio ; Urquidez-Romero, Rene ; Rodríguez-Tadeo, Alejandra ; Esparza-Romero, Julián ; Méndez-Estrada, Rosa Olivia ; Ramírez-López, Erik ; Robles-Sardin, Alma-Elizabeth ; Pacheco-Moreno, Bertha-Isabel ; Alemán-Mateo, Heliodoro</creatorcontrib><description>Background Predictive equations are the best option for assessing fat mass in clinical practice due to their low cost and practicality. However, several factors, such as age, excess adiposity, and ethnicity can compromise the accuracy of the equations reported to date in the literature. Objective To develop and validate two predictive equations for estimating fat mass: one based exclusively on anthropometric variables, the other combining anthropometric and bioelectrical impedance variables using the 4C model as the reference method. Subjects/Methods This is a cross-sectional study that included 386 Hispanic subjects aged ≥60 with excess adiposity. Fat mass and fat-free mass were measured by the 4C model as predictive variables. Age, sex, and certain anthropometric and bioelectrical impedance data were considered as potential predictor variables. To develop and to validate the equations, the multiple linear regression analysis, and cross-validation protocol were applied. Results Equation 1 included weight, sex, and BMI as predictor variables, while equation 2 considered sex, weight, height squared/resistance, and resistance as predictor variables. R 2 and RMSE values were ≥0.79 and ≤3.45, respectively, in both equations. The differences in estimates of fat mass by equations 1 and 2 were 0.34 kg and −0.25 kg, respectively, compared to the 4C model. This bias was not significant ( p  &lt; 0.05). Conclusions The new predictive equations are reliable for estimating body composition and are interchangeable with the 4C model. Thus, they can be used in epidemiological and clinical studies, as well as in clinical practice, to estimate body composition in older Hispanic adults with excess adiposity.</description><identifier>ISSN: 0954-3007</identifier><identifier>EISSN: 1476-5640</identifier><identifier>DOI: 10.1038/s41430-022-01171-w</identifier><identifier>PMID: 35705857</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/308/174 ; 692/700/2814 ; Adipose tissue ; Adiposity ; Adults ; Aged ; Aging ; Anthropometry ; Bioelectricity ; Body Composition ; Body fat ; Clinical medicine ; Clinical Nutrition ; Cross-Sectional Studies ; Epidemiology ; Fat-free body mass ; Hispanic or Latino ; Hispanic people ; Humans ; Impedance ; Internal Medicine ; Mathematical models ; Medicine ; Medicine &amp; Public Health ; Metabolic Diseases ; Middle Aged ; Obesity ; Older people ; Public Health ; Regression analysis ; Sex ; Weight</subject><ispartof>European journal of clinical nutrition, 2023-05, Vol.77 (5), p.515-524</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-35dba7925f237431a8b5efa681a5b61dad59d88e22d55910ac66277a06849953</citedby><cites>FETCH-LOGICAL-c305t-35dba7925f237431a8b5efa681a5b61dad59d88e22d55910ac66277a06849953</cites><orcidid>0000-0001-9748-2031 ; 0000-0003-3827-6056 ; 0000-0002-1582-2475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35705857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>González-Arellanes, Rogelio</creatorcontrib><creatorcontrib>Urquidez-Romero, Rene</creatorcontrib><creatorcontrib>Rodríguez-Tadeo, Alejandra</creatorcontrib><creatorcontrib>Esparza-Romero, Julián</creatorcontrib><creatorcontrib>Méndez-Estrada, Rosa Olivia</creatorcontrib><creatorcontrib>Ramírez-López, Erik</creatorcontrib><creatorcontrib>Robles-Sardin, Alma-Elizabeth</creatorcontrib><creatorcontrib>Pacheco-Moreno, Bertha-Isabel</creatorcontrib><creatorcontrib>Alemán-Mateo, Heliodoro</creatorcontrib><title>Predictive equations for fat mass in older Hispanic adults with excess adiposity using the 4‐compartment model as a reference method</title><title>European journal of clinical nutrition</title><addtitle>Eur J Clin Nutr</addtitle><addtitle>Eur J Clin Nutr</addtitle><description>Background Predictive equations are the best option for assessing fat mass in clinical practice due to their low cost and practicality. However, several factors, such as age, excess adiposity, and ethnicity can compromise the accuracy of the equations reported to date in the literature. Objective To develop and validate two predictive equations for estimating fat mass: one based exclusively on anthropometric variables, the other combining anthropometric and bioelectrical impedance variables using the 4C model as the reference method. Subjects/Methods This is a cross-sectional study that included 386 Hispanic subjects aged ≥60 with excess adiposity. Fat mass and fat-free mass were measured by the 4C model as predictive variables. Age, sex, and certain anthropometric and bioelectrical impedance data were considered as potential predictor variables. To develop and to validate the equations, the multiple linear regression analysis, and cross-validation protocol were applied. Results Equation 1 included weight, sex, and BMI as predictor variables, while equation 2 considered sex, weight, height squared/resistance, and resistance as predictor variables. R 2 and RMSE values were ≥0.79 and ≤3.45, respectively, in both equations. The differences in estimates of fat mass by equations 1 and 2 were 0.34 kg and −0.25 kg, respectively, compared to the 4C model. This bias was not significant ( p  &lt; 0.05). Conclusions The new predictive equations are reliable for estimating body composition and are interchangeable with the 4C model. Thus, they can be used in epidemiological and clinical studies, as well as in clinical practice, to estimate body composition in older Hispanic adults with excess adiposity.</description><subject>692/308/174</subject><subject>692/700/2814</subject><subject>Adipose tissue</subject><subject>Adiposity</subject><subject>Adults</subject><subject>Aged</subject><subject>Aging</subject><subject>Anthropometry</subject><subject>Bioelectricity</subject><subject>Body Composition</subject><subject>Body fat</subject><subject>Clinical medicine</subject><subject>Clinical Nutrition</subject><subject>Cross-Sectional Studies</subject><subject>Epidemiology</subject><subject>Fat-free body mass</subject><subject>Hispanic or Latino</subject><subject>Hispanic people</subject><subject>Humans</subject><subject>Impedance</subject><subject>Internal Medicine</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolic Diseases</subject><subject>Middle Aged</subject><subject>Obesity</subject><subject>Older people</subject><subject>Public Health</subject><subject>Regression analysis</subject><subject>Sex</subject><subject>Weight</subject><issn>0954-3007</issn><issn>1476-5640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kb9uFDEQhy0EIkfgBSiQJRqaJf7v3RJFQJAikSK95bNnc4527Y3t5UhHRc0z8iQ4XAApBdUU881vZvQh9JKSt5Tw_qQIKjjpCGMdoVTTbv8IbajQqpNKkMdoQwYpOk6IPkLPSrkmpDU1e4qOuNRE9lJv0PeLDD64Gr4AhpvV1pBiwWPKeLQVz7YUHCJOk4eMz0JZbAwOW79OteB9qDsMXx00yPqwpBLqLV5LiFe47gCLn99-uDQvNtcZYktLHiZsG4wzjJAhOsAz1F3yz9GT0U4FXtzXY3T54f3l6Vl3_vnjp9N3553jRNaOS7-1emByZFwLTm2_lTBa1VMrt4p66-Xg-x4Y81IOlFinFNPaEtWLYZD8GL05xC453axQqplDcTBNNkJai2FKa6k5Eaqhrx-g12nNsR1nWE8pHyTTtFHsQLmcSmlfmSWH2eZbQ4m5k2QOkkyTZH5LMvs29Oo-et3O4P-O_LHSAH4ASmvFK8j_dv8n9hf3I58i</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>González-Arellanes, Rogelio</creator><creator>Urquidez-Romero, Rene</creator><creator>Rodríguez-Tadeo, Alejandra</creator><creator>Esparza-Romero, Julián</creator><creator>Méndez-Estrada, Rosa Olivia</creator><creator>Ramírez-López, Erik</creator><creator>Robles-Sardin, Alma-Elizabeth</creator><creator>Pacheco-Moreno, Bertha-Isabel</creator><creator>Alemán-Mateo, Heliodoro</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AN0</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9748-2031</orcidid><orcidid>https://orcid.org/0000-0003-3827-6056</orcidid><orcidid>https://orcid.org/0000-0002-1582-2475</orcidid></search><sort><creationdate>20230501</creationdate><title>Predictive equations for fat mass in older Hispanic adults with excess adiposity using the 4‐compartment model as a reference method</title><author>González-Arellanes, Rogelio ; Urquidez-Romero, Rene ; Rodríguez-Tadeo, Alejandra ; Esparza-Romero, Julián ; Méndez-Estrada, Rosa Olivia ; Ramírez-López, Erik ; Robles-Sardin, Alma-Elizabeth ; Pacheco-Moreno, Bertha-Isabel ; Alemán-Mateo, Heliodoro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-35dba7925f237431a8b5efa681a5b61dad59d88e22d55910ac66277a06849953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>692/308/174</topic><topic>692/700/2814</topic><topic>Adipose tissue</topic><topic>Adiposity</topic><topic>Adults</topic><topic>Aged</topic><topic>Aging</topic><topic>Anthropometry</topic><topic>Bioelectricity</topic><topic>Body Composition</topic><topic>Body fat</topic><topic>Clinical medicine</topic><topic>Clinical Nutrition</topic><topic>Cross-Sectional Studies</topic><topic>Epidemiology</topic><topic>Fat-free body mass</topic><topic>Hispanic or Latino</topic><topic>Hispanic people</topic><topic>Humans</topic><topic>Impedance</topic><topic>Internal Medicine</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolic Diseases</topic><topic>Middle Aged</topic><topic>Obesity</topic><topic>Older people</topic><topic>Public Health</topic><topic>Regression analysis</topic><topic>Sex</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Arellanes, Rogelio</creatorcontrib><creatorcontrib>Urquidez-Romero, Rene</creatorcontrib><creatorcontrib>Rodríguez-Tadeo, Alejandra</creatorcontrib><creatorcontrib>Esparza-Romero, Julián</creatorcontrib><creatorcontrib>Méndez-Estrada, Rosa Olivia</creatorcontrib><creatorcontrib>Ramírez-López, Erik</creatorcontrib><creatorcontrib>Robles-Sardin, Alma-Elizabeth</creatorcontrib><creatorcontrib>Pacheco-Moreno, Bertha-Isabel</creatorcontrib><creatorcontrib>Alemán-Mateo, Heliodoro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>British Nursing Database</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of clinical nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Arellanes, Rogelio</au><au>Urquidez-Romero, Rene</au><au>Rodríguez-Tadeo, Alejandra</au><au>Esparza-Romero, Julián</au><au>Méndez-Estrada, Rosa Olivia</au><au>Ramírez-López, Erik</au><au>Robles-Sardin, Alma-Elizabeth</au><au>Pacheco-Moreno, Bertha-Isabel</au><au>Alemán-Mateo, Heliodoro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive equations for fat mass in older Hispanic adults with excess adiposity using the 4‐compartment model as a reference method</atitle><jtitle>European journal of clinical nutrition</jtitle><stitle>Eur J Clin Nutr</stitle><addtitle>Eur J Clin Nutr</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>77</volume><issue>5</issue><spage>515</spage><epage>524</epage><pages>515-524</pages><issn>0954-3007</issn><eissn>1476-5640</eissn><abstract>Background Predictive equations are the best option for assessing fat mass in clinical practice due to their low cost and practicality. However, several factors, such as age, excess adiposity, and ethnicity can compromise the accuracy of the equations reported to date in the literature. Objective To develop and validate two predictive equations for estimating fat mass: one based exclusively on anthropometric variables, the other combining anthropometric and bioelectrical impedance variables using the 4C model as the reference method. Subjects/Methods This is a cross-sectional study that included 386 Hispanic subjects aged ≥60 with excess adiposity. Fat mass and fat-free mass were measured by the 4C model as predictive variables. Age, sex, and certain anthropometric and bioelectrical impedance data were considered as potential predictor variables. To develop and to validate the equations, the multiple linear regression analysis, and cross-validation protocol were applied. Results Equation 1 included weight, sex, and BMI as predictor variables, while equation 2 considered sex, weight, height squared/resistance, and resistance as predictor variables. R 2 and RMSE values were ≥0.79 and ≤3.45, respectively, in both equations. The differences in estimates of fat mass by equations 1 and 2 were 0.34 kg and −0.25 kg, respectively, compared to the 4C model. This bias was not significant ( p  &lt; 0.05). Conclusions The new predictive equations are reliable for estimating body composition and are interchangeable with the 4C model. Thus, they can be used in epidemiological and clinical studies, as well as in clinical practice, to estimate body composition in older Hispanic adults with excess adiposity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35705857</pmid><doi>10.1038/s41430-022-01171-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9748-2031</orcidid><orcidid>https://orcid.org/0000-0003-3827-6056</orcidid><orcidid>https://orcid.org/0000-0002-1582-2475</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-3007
ispartof European journal of clinical nutrition, 2023-05, Vol.77 (5), p.515-524
issn 0954-3007
1476-5640
language eng
recordid cdi_proquest_miscellaneous_2677573046
source MEDLINE; Alma/SFX Local Collection
subjects 692/308/174
692/700/2814
Adipose tissue
Adiposity
Adults
Aged
Aging
Anthropometry
Bioelectricity
Body Composition
Body fat
Clinical medicine
Clinical Nutrition
Cross-Sectional Studies
Epidemiology
Fat-free body mass
Hispanic or Latino
Hispanic people
Humans
Impedance
Internal Medicine
Mathematical models
Medicine
Medicine & Public Health
Metabolic Diseases
Middle Aged
Obesity
Older people
Public Health
Regression analysis
Sex
Weight
title Predictive equations for fat mass in older Hispanic adults with excess adiposity using the 4‐compartment model as a reference method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T09%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20equations%20for%20fat%20mass%20in%20older%20Hispanic%20adults%20with%20excess%20adiposity%20using%20the%204%E2%80%90compartment%20model%20as%20a%20reference%20method&rft.jtitle=European%20journal%20of%20clinical%20nutrition&rft.au=Gonz%C3%A1lez-Arellanes,%20Rogelio&rft.date=2023-05-01&rft.volume=77&rft.issue=5&rft.spage=515&rft.epage=524&rft.pages=515-524&rft.issn=0954-3007&rft.eissn=1476-5640&rft_id=info:doi/10.1038/s41430-022-01171-w&rft_dat=%3Cproquest_cross%3E2811395271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811395271&rft_id=info:pmid/35705857&rfr_iscdi=true