Oscillating foils of high propulsive efficiency
Thrust-producing harmonically oscillating foils are studied through force and power measurements, as well as visualization data, to classify the principal characteristics of the flow around and in the wake of the foil. Visualization data are obtained using digital particle image velocimetry at Reyno...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 1998-04, Vol.360, p.41-72 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | |
container_start_page | 41 |
container_title | Journal of fluid mechanics |
container_volume | 360 |
creator | ANDERSON, J. M. STREITLIEN, K. BARRETT, D. S. TRIANTAFYLLOU, M. S. |
description | Thrust-producing harmonically oscillating foils are studied through
force and power
measurements, as well as visualization data, to classify the principal
characteristics of
the flow around and in the wake of the foil. Visualization data are obtained
using
digital particle image velocimetry at Reynolds number 1100, and force and
power
data are measured at Reynolds number 40 000. The experimental results are
compared
with theoretical predictions of linear and nonlinear inviscid theory and
it is found
that agreement between theory and experiment is good over a certain parametric
range, when the wake consists of an array of alternating vortices and either
very
weak or no leading-edge vortices form. High propulsive efficiency, as high
as 87%, is
measured experimentally under conditions of optimal wake formation. Visualization
results elucidate the basic mechanisms involved and show that conditions
of high
efficiency are associated with the formation on alternating sides of the
foil of a
moderately strong leading-edge vortex per half-cycle, which is convected
downstream
and interacts with trailing-edge vorticity, resulting eventually in the
formation of a
reverse Kármán street. The phase angle between transverse
oscillation and angular
motion is the critical parameter affecting the interaction of leading-edge
and
trailing-edge vorticity, as well as the efficiency of propulsion. |
doi_str_mv | 10.1017/S0022112097008392 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26774307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112097008392</cupid><sourcerecordid>26774307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-bca7b7c9a55b8616497a1219f79b5003c607e1238ebf91a1b023663357035e9c3</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwAWwZEFvoe3Zi1yOqoCBKK1SYLcfYrUuaFDtB9O9J1YoFiekN97yro0vIJcINAorBHIBSRApSAAyZpEekhxmXqeBZfkx6uzjd5afkLMYVALIO7ZHBLBpflrrx1SJxtS9jUrtk6RfLZBPqTVtG_2UT65w33lZme05OnC6jvTjcPnm7v3sdPaST2fhxdDtJTZ7RJi2MFoUwUud5MeTIMyk0UpROyCIHYIaDsEjZ0BZOosYCKOOcsVwAy600rE-u972dxWdrY6PWPhrbmVa2bqOiXIiMgehA3IMm1DEG69Qm-LUOW4WgdtOoP9N0P1eHch2NLl3QlfHx97GjIcNddbrHfGzs92-sw4figolc8fGLwvnT5HkKU4Udzw4qel0E_76walW3oep2-kfmB9j9fx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26774307</pqid></control><display><type>article</type><title>Oscillating foils of high propulsive efficiency</title><source>AUTh Library subscriptions: Cambridge Journals Online</source><creator>ANDERSON, J. M. ; STREITLIEN, K. ; BARRETT, D. S. ; TRIANTAFYLLOU, M. S.</creator><creatorcontrib>ANDERSON, J. M. ; STREITLIEN, K. ; BARRETT, D. S. ; TRIANTAFYLLOU, M. S.</creatorcontrib><description>Thrust-producing harmonically oscillating foils are studied through
force and power
measurements, as well as visualization data, to classify the principal
characteristics of
the flow around and in the wake of the foil. Visualization data are obtained
using
digital particle image velocimetry at Reynolds number 1100, and force and
power
data are measured at Reynolds number 40 000. The experimental results are
compared
with theoretical predictions of linear and nonlinear inviscid theory and
it is found
that agreement between theory and experiment is good over a certain parametric
range, when the wake consists of an array of alternating vortices and either
very
weak or no leading-edge vortices form. High propulsive efficiency, as high
as 87%, is
measured experimentally under conditions of optimal wake formation. Visualization
results elucidate the basic mechanisms involved and show that conditions
of high
efficiency are associated with the formation on alternating sides of the
foil of a
moderately strong leading-edge vortex per half-cycle, which is convected
downstream
and interacts with trailing-edge vorticity, resulting eventually in the
formation of a
reverse Kármán street. The phase angle between transverse
oscillation and angular
motion is the critical parameter affecting the interaction of leading-edge
and
trailing-edge vorticity, as well as the efficiency of propulsion.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112097008392</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Applied fluid mechanics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamics, hydraulics, hydrostatics ; Physics</subject><ispartof>Journal of fluid mechanics, 1998-04, Vol.360, p.41-72</ispartof><rights>1998 Cambridge University Press</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-bca7b7c9a55b8616497a1219f79b5003c607e1238ebf91a1b023663357035e9c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112097008392/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2210417$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ANDERSON, J. M.</creatorcontrib><creatorcontrib>STREITLIEN, K.</creatorcontrib><creatorcontrib>BARRETT, D. S.</creatorcontrib><creatorcontrib>TRIANTAFYLLOU, M. S.</creatorcontrib><title>Oscillating foils of high propulsive efficiency</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Thrust-producing harmonically oscillating foils are studied through
force and power
measurements, as well as visualization data, to classify the principal
characteristics of
the flow around and in the wake of the foil. Visualization data are obtained
using
digital particle image velocimetry at Reynolds number 1100, and force and
power
data are measured at Reynolds number 40 000. The experimental results are
compared
with theoretical predictions of linear and nonlinear inviscid theory and
it is found
that agreement between theory and experiment is good over a certain parametric
range, when the wake consists of an array of alternating vortices and either
very
weak or no leading-edge vortices form. High propulsive efficiency, as high
as 87%, is
measured experimentally under conditions of optimal wake formation. Visualization
results elucidate the basic mechanisms involved and show that conditions
of high
efficiency are associated with the formation on alternating sides of the
foil of a
moderately strong leading-edge vortex per half-cycle, which is convected
downstream
and interacts with trailing-edge vorticity, resulting eventually in the
formation of a
reverse Kármán street. The phase angle between transverse
oscillation and angular
motion is the critical parameter affecting the interaction of leading-edge
and
trailing-edge vorticity, as well as the efficiency of propulsion.</description><subject>Applied fluid mechanics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamics, hydraulics, hydrostatics</subject><subject>Physics</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwAWwZEFvoe3Zi1yOqoCBKK1SYLcfYrUuaFDtB9O9J1YoFiekN97yro0vIJcINAorBHIBSRApSAAyZpEekhxmXqeBZfkx6uzjd5afkLMYVALIO7ZHBLBpflrrx1SJxtS9jUrtk6RfLZBPqTVtG_2UT65w33lZme05OnC6jvTjcPnm7v3sdPaST2fhxdDtJTZ7RJi2MFoUwUud5MeTIMyk0UpROyCIHYIaDsEjZ0BZOosYCKOOcsVwAy600rE-u972dxWdrY6PWPhrbmVa2bqOiXIiMgehA3IMm1DEG69Qm-LUOW4WgdtOoP9N0P1eHch2NLl3QlfHx97GjIcNddbrHfGzs92-sw4figolc8fGLwvnT5HkKU4Udzw4qel0E_76walW3oep2-kfmB9j9fx4</recordid><startdate>19980410</startdate><enddate>19980410</enddate><creator>ANDERSON, J. M.</creator><creator>STREITLIEN, K.</creator><creator>BARRETT, D. S.</creator><creator>TRIANTAFYLLOU, M. S.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19980410</creationdate><title>Oscillating foils of high propulsive efficiency</title><author>ANDERSON, J. M. ; STREITLIEN, K. ; BARRETT, D. S. ; TRIANTAFYLLOU, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-bca7b7c9a55b8616497a1219f79b5003c607e1238ebf91a1b023663357035e9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied fluid mechanics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamics, hydraulics, hydrostatics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ANDERSON, J. M.</creatorcontrib><creatorcontrib>STREITLIEN, K.</creatorcontrib><creatorcontrib>BARRETT, D. S.</creatorcontrib><creatorcontrib>TRIANTAFYLLOU, M. S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ANDERSON, J. M.</au><au>STREITLIEN, K.</au><au>BARRETT, D. S.</au><au>TRIANTAFYLLOU, M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillating foils of high propulsive efficiency</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>1998-04-10</date><risdate>1998</risdate><volume>360</volume><spage>41</spage><epage>72</epage><pages>41-72</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Thrust-producing harmonically oscillating foils are studied through
force and power
measurements, as well as visualization data, to classify the principal
characteristics of
the flow around and in the wake of the foil. Visualization data are obtained
using
digital particle image velocimetry at Reynolds number 1100, and force and
power
data are measured at Reynolds number 40 000. The experimental results are
compared
with theoretical predictions of linear and nonlinear inviscid theory and
it is found
that agreement between theory and experiment is good over a certain parametric
range, when the wake consists of an array of alternating vortices and either
very
weak or no leading-edge vortices form. High propulsive efficiency, as high
as 87%, is
measured experimentally under conditions of optimal wake formation. Visualization
results elucidate the basic mechanisms involved and show that conditions
of high
efficiency are associated with the formation on alternating sides of the
foil of a
moderately strong leading-edge vortex per half-cycle, which is convected
downstream
and interacts with trailing-edge vorticity, resulting eventually in the
formation of a
reverse Kármán street. The phase angle between transverse
oscillation and angular
motion is the critical parameter affecting the interaction of leading-edge
and
trailing-edge vorticity, as well as the efficiency of propulsion.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112097008392</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 1998-04, Vol.360, p.41-72 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_26774307 |
source | AUTh Library subscriptions: Cambridge Journals Online |
subjects | Applied fluid mechanics Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Hydrodynamics, hydraulics, hydrostatics Physics |
title | Oscillating foils of high propulsive efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A54%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillating%20foils%20of%20high%20propulsive%20efficiency&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=ANDERSON,%20J.%20M.&rft.date=1998-04-10&rft.volume=360&rft.spage=41&rft.epage=72&rft.pages=41-72&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112097008392&rft_dat=%3Cproquest_cross%3E26774307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26774307&rft_id=info:pmid/&rft_cupid=10_1017_S0022112097008392&rfr_iscdi=true |