Oscillating foils of high propulsive efficiency

Thrust-producing harmonically oscillating foils are studied through force and power measurements, as well as visualization data, to classify the principal characteristics of the flow around and in the wake of the foil. Visualization data are obtained using digital particle image velocimetry at Reyno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 1998-04, Vol.360, p.41-72
Hauptverfasser: ANDERSON, J. M., STREITLIEN, K., BARRETT, D. S., TRIANTAFYLLOU, M. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue
container_start_page 41
container_title Journal of fluid mechanics
container_volume 360
creator ANDERSON, J. M.
STREITLIEN, K.
BARRETT, D. S.
TRIANTAFYLLOU, M. S.
description Thrust-producing harmonically oscillating foils are studied through force and power measurements, as well as visualization data, to classify the principal characteristics of the flow around and in the wake of the foil. Visualization data are obtained using digital particle image velocimetry at Reynolds number 1100, and force and power data are measured at Reynolds number 40 000. The experimental results are compared with theoretical predictions of linear and nonlinear inviscid theory and it is found that agreement between theory and experiment is good over a certain parametric range, when the wake consists of an array of alternating vortices and either very weak or no leading-edge vortices form. High propulsive efficiency, as high as 87%, is measured experimentally under conditions of optimal wake formation. Visualization results elucidate the basic mechanisms involved and show that conditions of high efficiency are associated with the formation on alternating sides of the foil of a moderately strong leading-edge vortex per half-cycle, which is convected downstream and interacts with trailing-edge vorticity, resulting eventually in the formation of a reverse Kármán street. The phase angle between transverse oscillation and angular motion is the critical parameter affecting the interaction of leading-edge and trailing-edge vorticity, as well as the efficiency of propulsion.
doi_str_mv 10.1017/S0022112097008392
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26774307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112097008392</cupid><sourcerecordid>26774307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-bca7b7c9a55b8616497a1219f79b5003c607e1238ebf91a1b023663357035e9c3</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwAWwZEFvoe3Zi1yOqoCBKK1SYLcfYrUuaFDtB9O9J1YoFiekN97yro0vIJcINAorBHIBSRApSAAyZpEekhxmXqeBZfkx6uzjd5afkLMYVALIO7ZHBLBpflrrx1SJxtS9jUrtk6RfLZBPqTVtG_2UT65w33lZme05OnC6jvTjcPnm7v3sdPaST2fhxdDtJTZ7RJi2MFoUwUud5MeTIMyk0UpROyCIHYIaDsEjZ0BZOosYCKOOcsVwAy600rE-u972dxWdrY6PWPhrbmVa2bqOiXIiMgehA3IMm1DEG69Qm-LUOW4WgdtOoP9N0P1eHch2NLl3QlfHx97GjIcNddbrHfGzs92-sw4figolc8fGLwvnT5HkKU4Udzw4qel0E_76walW3oep2-kfmB9j9fx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26774307</pqid></control><display><type>article</type><title>Oscillating foils of high propulsive efficiency</title><source>AUTh Library subscriptions: Cambridge Journals Online</source><creator>ANDERSON, J. M. ; STREITLIEN, K. ; BARRETT, D. S. ; TRIANTAFYLLOU, M. S.</creator><creatorcontrib>ANDERSON, J. M. ; STREITLIEN, K. ; BARRETT, D. S. ; TRIANTAFYLLOU, M. S.</creatorcontrib><description>Thrust-producing harmonically oscillating foils are studied through force and power measurements, as well as visualization data, to classify the principal characteristics of the flow around and in the wake of the foil. Visualization data are obtained using digital particle image velocimetry at Reynolds number 1100, and force and power data are measured at Reynolds number 40 000. The experimental results are compared with theoretical predictions of linear and nonlinear inviscid theory and it is found that agreement between theory and experiment is good over a certain parametric range, when the wake consists of an array of alternating vortices and either very weak or no leading-edge vortices form. High propulsive efficiency, as high as 87%, is measured experimentally under conditions of optimal wake formation. Visualization results elucidate the basic mechanisms involved and show that conditions of high efficiency are associated with the formation on alternating sides of the foil of a moderately strong leading-edge vortex per half-cycle, which is convected downstream and interacts with trailing-edge vorticity, resulting eventually in the formation of a reverse Kármán street. The phase angle between transverse oscillation and angular motion is the critical parameter affecting the interaction of leading-edge and trailing-edge vorticity, as well as the efficiency of propulsion.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112097008392</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Applied fluid mechanics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamics, hydraulics, hydrostatics ; Physics</subject><ispartof>Journal of fluid mechanics, 1998-04, Vol.360, p.41-72</ispartof><rights>1998 Cambridge University Press</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-bca7b7c9a55b8616497a1219f79b5003c607e1238ebf91a1b023663357035e9c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112097008392/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2210417$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ANDERSON, J. M.</creatorcontrib><creatorcontrib>STREITLIEN, K.</creatorcontrib><creatorcontrib>BARRETT, D. S.</creatorcontrib><creatorcontrib>TRIANTAFYLLOU, M. S.</creatorcontrib><title>Oscillating foils of high propulsive efficiency</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Thrust-producing harmonically oscillating foils are studied through force and power measurements, as well as visualization data, to classify the principal characteristics of the flow around and in the wake of the foil. Visualization data are obtained using digital particle image velocimetry at Reynolds number 1100, and force and power data are measured at Reynolds number 40 000. The experimental results are compared with theoretical predictions of linear and nonlinear inviscid theory and it is found that agreement between theory and experiment is good over a certain parametric range, when the wake consists of an array of alternating vortices and either very weak or no leading-edge vortices form. High propulsive efficiency, as high as 87%, is measured experimentally under conditions of optimal wake formation. Visualization results elucidate the basic mechanisms involved and show that conditions of high efficiency are associated with the formation on alternating sides of the foil of a moderately strong leading-edge vortex per half-cycle, which is convected downstream and interacts with trailing-edge vorticity, resulting eventually in the formation of a reverse Kármán street. The phase angle between transverse oscillation and angular motion is the critical parameter affecting the interaction of leading-edge and trailing-edge vorticity, as well as the efficiency of propulsion.</description><subject>Applied fluid mechanics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamics, hydraulics, hydrostatics</subject><subject>Physics</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqXwAWwZEFvoe3Zi1yOqoCBKK1SYLcfYrUuaFDtB9O9J1YoFiekN97yro0vIJcINAorBHIBSRApSAAyZpEekhxmXqeBZfkx6uzjd5afkLMYVALIO7ZHBLBpflrrx1SJxtS9jUrtk6RfLZBPqTVtG_2UT65w33lZme05OnC6jvTjcPnm7v3sdPaST2fhxdDtJTZ7RJi2MFoUwUud5MeTIMyk0UpROyCIHYIaDsEjZ0BZOosYCKOOcsVwAy600rE-u972dxWdrY6PWPhrbmVa2bqOiXIiMgehA3IMm1DEG69Qm-LUOW4WgdtOoP9N0P1eHch2NLl3QlfHx97GjIcNddbrHfGzs92-sw4figolc8fGLwvnT5HkKU4Udzw4qel0E_76walW3oep2-kfmB9j9fx4</recordid><startdate>19980410</startdate><enddate>19980410</enddate><creator>ANDERSON, J. M.</creator><creator>STREITLIEN, K.</creator><creator>BARRETT, D. S.</creator><creator>TRIANTAFYLLOU, M. S.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19980410</creationdate><title>Oscillating foils of high propulsive efficiency</title><author>ANDERSON, J. M. ; STREITLIEN, K. ; BARRETT, D. S. ; TRIANTAFYLLOU, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-bca7b7c9a55b8616497a1219f79b5003c607e1238ebf91a1b023663357035e9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied fluid mechanics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamics, hydraulics, hydrostatics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ANDERSON, J. M.</creatorcontrib><creatorcontrib>STREITLIEN, K.</creatorcontrib><creatorcontrib>BARRETT, D. S.</creatorcontrib><creatorcontrib>TRIANTAFYLLOU, M. S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ANDERSON, J. M.</au><au>STREITLIEN, K.</au><au>BARRETT, D. S.</au><au>TRIANTAFYLLOU, M. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillating foils of high propulsive efficiency</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>1998-04-10</date><risdate>1998</risdate><volume>360</volume><spage>41</spage><epage>72</epage><pages>41-72</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>Thrust-producing harmonically oscillating foils are studied through force and power measurements, as well as visualization data, to classify the principal characteristics of the flow around and in the wake of the foil. Visualization data are obtained using digital particle image velocimetry at Reynolds number 1100, and force and power data are measured at Reynolds number 40 000. The experimental results are compared with theoretical predictions of linear and nonlinear inviscid theory and it is found that agreement between theory and experiment is good over a certain parametric range, when the wake consists of an array of alternating vortices and either very weak or no leading-edge vortices form. High propulsive efficiency, as high as 87%, is measured experimentally under conditions of optimal wake formation. Visualization results elucidate the basic mechanisms involved and show that conditions of high efficiency are associated with the formation on alternating sides of the foil of a moderately strong leading-edge vortex per half-cycle, which is convected downstream and interacts with trailing-edge vorticity, resulting eventually in the formation of a reverse Kármán street. The phase angle between transverse oscillation and angular motion is the critical parameter affecting the interaction of leading-edge and trailing-edge vorticity, as well as the efficiency of propulsion.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112097008392</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 1998-04, Vol.360, p.41-72
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_26774307
source AUTh Library subscriptions: Cambridge Journals Online
subjects Applied fluid mechanics
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Hydrodynamics, hydraulics, hydrostatics
Physics
title Oscillating foils of high propulsive efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A54%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillating%20foils%20of%20high%20propulsive%20efficiency&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=ANDERSON,%20J.%20M.&rft.date=1998-04-10&rft.volume=360&rft.spage=41&rft.epage=72&rft.pages=41-72&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112097008392&rft_dat=%3Cproquest_cross%3E26774307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26774307&rft_id=info:pmid/&rft_cupid=10_1017_S0022112097008392&rfr_iscdi=true