METTL3 Inhibits Antitumor Immunity by Targeting m6A-BHLHE41-CXCL1/CXCR2 Axis to Promote Colorectal Cancer
BACKGROUND & AIMSN6-Methyladenosine (m6A) is the most prevalent RNA modification and recognized as an important epitranscriptomic mechanism in colorectal cancer (CRC). We aimed to exploit whether and how tumor-intrinsic m6A modification driven by methyltransferase like 3 (METTL3) can dictate the...
Gespeichert in:
Veröffentlicht in: | Gastroenterology (New York, N.Y. 1943) N.Y. 1943), 2022-10, Vol.163 (4), p.891-907 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 907 |
---|---|
container_issue | 4 |
container_start_page | 891 |
container_title | Gastroenterology (New York, N.Y. 1943) |
container_volume | 163 |
creator | Chen, Huarong Pan, Yasi Zhou, Qiming Liang, Cong Wong, Chi-Chun Zhou, Yunfei Huang, Dan Liu, Weixin Zhai, Jianning Gou, Hongyan Su, Hao Zhang, Xiaoting Xu, Hongzhi Wang, Yifei Kang, Wei Kei Wu, William Ka Yu, Jun |
description | BACKGROUND & AIMSN6-Methyladenosine (m6A) is the most prevalent RNA modification and recognized as an important epitranscriptomic mechanism in colorectal cancer (CRC). We aimed to exploit whether and how tumor-intrinsic m6A modification driven by methyltransferase like 3 (METTL3) can dictate the immune landscape of CRC.METHODSMettl3 knockout mice, CD34+ humanized mice, and different syngeneic mice models were used. Immune cell composition and cytokine level were analyzed by flow cytometry and Cytokine 23-Plex immunoassay, respectively. M6A sequencing and RNA sequencing were performed to identify downstream targets and pathways of METTL3. Human CRC specimens (n = 176) were used to evaluate correlation between METTL3 expression and myeloid-derived suppressor cell (MDSC) infiltration.RESULTSWe demonstrated that silencing of METTL3 in CRC cells reduced MDSC accumulation to sustain activation and proliferation of CD4+ and CD8+ T cells, and eventually suppressed CRC in ApcMin/+Mettl3+/- mice, CD34+ humanized mice, and syngeneic mice models. Mechanistically, METTL3 activated the m6A-BHLHE41-CXCL1 axis by analysis of m6A sequencing, RNA sequencing, and cytokine arrays. METTL3 promoted BHLHE41 expression in an m6A-dependent manner, which subsequently induced CXCL1 transcription to enhance MDSC migration in vitro. However, the effect was negligible on BHLHE41 depletion, CXCL1 protein or CXCR2 inhibitor SB265610 administration, inferring that METTL3 promotes MDSC migration via BHLHE41-CXCL1/CXCR2. Consistently, depletion of MDSCs by anti-Gr1 antibody or SB265610 blocked the tumor-promoting effect of METTL3 in vivo. Importantly, targeting METTL3 by METTL3-single guide RNA or specific inhibitor potentiated the effect of anti-programmed cell death protein 1 (anti-PD1) treatment.CONCLUSIONSOur study identifies METTL3 as a potential therapeutic target for CRC immunotherapy whose inhibition reverses immune suppression through the m6A-BHLHE41-CXCL1 axis. METTL3 inhibition plus anti-PD1 treatment shows promising antitumor efficacy against CRC. |
doi_str_mv | 10.1053/j.gastro.2022.06.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2676924970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676924970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-5c9aaddfdfd827f88d58f5c4bb31618a1433f62c73e07b386432a0e11f252b883</originalsourceid><addsrcrecordid>eNotkMFLwzAchYMoOKf_gYccvbT7JWnT9FjLdIOKIhW8hbRLZ0bbaJKC--_tmDx47_LxDh9C9wRiAilbHeK98sHZmAKlMfAYaHKBFiSlIgIg9BIt5uFRCiK9RjfeHwAgZ4IskHlZ13XF8Hb8Mo0JHhdjMGEarMPbYZhGE464OeJaub0OZtzjgRfR46barBMSlZ9lRVZzv1Nc_BqPg8Vvzg42aFza3jrdBtXjUo2tdrfoqlO913f_u0QfT-u63ETV6_O2LKqopRxClLa5UrtdN0fQrBNil4oubZOmYYQToUjCWMdpmzENWcMETxhVoAnpaEobIdgSPZx_v539mbQPcjC-1X2vRm0nLynPeE6TPIMZTc5o66z3Tnfy25lBuaMkIE9m5UGezcqTWQlczmbZH449bEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676924970</pqid></control><display><type>article</type><title>METTL3 Inhibits Antitumor Immunity by Targeting m6A-BHLHE41-CXCL1/CXCR2 Axis to Promote Colorectal Cancer</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Alma/SFX Local Collection</source><creator>Chen, Huarong ; Pan, Yasi ; Zhou, Qiming ; Liang, Cong ; Wong, Chi-Chun ; Zhou, Yunfei ; Huang, Dan ; Liu, Weixin ; Zhai, Jianning ; Gou, Hongyan ; Su, Hao ; Zhang, Xiaoting ; Xu, Hongzhi ; Wang, Yifei ; Kang, Wei ; Kei Wu, William Ka ; Yu, Jun</creator><creatorcontrib>Chen, Huarong ; Pan, Yasi ; Zhou, Qiming ; Liang, Cong ; Wong, Chi-Chun ; Zhou, Yunfei ; Huang, Dan ; Liu, Weixin ; Zhai, Jianning ; Gou, Hongyan ; Su, Hao ; Zhang, Xiaoting ; Xu, Hongzhi ; Wang, Yifei ; Kang, Wei ; Kei Wu, William Ka ; Yu, Jun</creatorcontrib><description>BACKGROUND & AIMSN6-Methyladenosine (m6A) is the most prevalent RNA modification and recognized as an important epitranscriptomic mechanism in colorectal cancer (CRC). We aimed to exploit whether and how tumor-intrinsic m6A modification driven by methyltransferase like 3 (METTL3) can dictate the immune landscape of CRC.METHODSMettl3 knockout mice, CD34+ humanized mice, and different syngeneic mice models were used. Immune cell composition and cytokine level were analyzed by flow cytometry and Cytokine 23-Plex immunoassay, respectively. M6A sequencing and RNA sequencing were performed to identify downstream targets and pathways of METTL3. Human CRC specimens (n = 176) were used to evaluate correlation between METTL3 expression and myeloid-derived suppressor cell (MDSC) infiltration.RESULTSWe demonstrated that silencing of METTL3 in CRC cells reduced MDSC accumulation to sustain activation and proliferation of CD4+ and CD8+ T cells, and eventually suppressed CRC in ApcMin/+Mettl3+/- mice, CD34+ humanized mice, and syngeneic mice models. Mechanistically, METTL3 activated the m6A-BHLHE41-CXCL1 axis by analysis of m6A sequencing, RNA sequencing, and cytokine arrays. METTL3 promoted BHLHE41 expression in an m6A-dependent manner, which subsequently induced CXCL1 transcription to enhance MDSC migration in vitro. However, the effect was negligible on BHLHE41 depletion, CXCL1 protein or CXCR2 inhibitor SB265610 administration, inferring that METTL3 promotes MDSC migration via BHLHE41-CXCL1/CXCR2. Consistently, depletion of MDSCs by anti-Gr1 antibody or SB265610 blocked the tumor-promoting effect of METTL3 in vivo. Importantly, targeting METTL3 by METTL3-single guide RNA or specific inhibitor potentiated the effect of anti-programmed cell death protein 1 (anti-PD1) treatment.CONCLUSIONSOur study identifies METTL3 as a potential therapeutic target for CRC immunotherapy whose inhibition reverses immune suppression through the m6A-BHLHE41-CXCL1 axis. METTL3 inhibition plus anti-PD1 treatment shows promising antitumor efficacy against CRC.</description><identifier>ISSN: 0016-5085</identifier><identifier>EISSN: 1528-0012</identifier><identifier>DOI: 10.1053/j.gastro.2022.06.024</identifier><language>eng</language><ispartof>Gastroenterology (New York, N.Y. 1943), 2022-10, Vol.163 (4), p.891-907</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-5c9aaddfdfd827f88d58f5c4bb31618a1433f62c73e07b386432a0e11f252b883</citedby><cites>FETCH-LOGICAL-c260t-5c9aaddfdfd827f88d58f5c4bb31618a1433f62c73e07b386432a0e11f252b883</cites><orcidid>0000-0001-5008-2153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Huarong</creatorcontrib><creatorcontrib>Pan, Yasi</creatorcontrib><creatorcontrib>Zhou, Qiming</creatorcontrib><creatorcontrib>Liang, Cong</creatorcontrib><creatorcontrib>Wong, Chi-Chun</creatorcontrib><creatorcontrib>Zhou, Yunfei</creatorcontrib><creatorcontrib>Huang, Dan</creatorcontrib><creatorcontrib>Liu, Weixin</creatorcontrib><creatorcontrib>Zhai, Jianning</creatorcontrib><creatorcontrib>Gou, Hongyan</creatorcontrib><creatorcontrib>Su, Hao</creatorcontrib><creatorcontrib>Zhang, Xiaoting</creatorcontrib><creatorcontrib>Xu, Hongzhi</creatorcontrib><creatorcontrib>Wang, Yifei</creatorcontrib><creatorcontrib>Kang, Wei</creatorcontrib><creatorcontrib>Kei Wu, William Ka</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><title>METTL3 Inhibits Antitumor Immunity by Targeting m6A-BHLHE41-CXCL1/CXCR2 Axis to Promote Colorectal Cancer</title><title>Gastroenterology (New York, N.Y. 1943)</title><description>BACKGROUND & AIMSN6-Methyladenosine (m6A) is the most prevalent RNA modification and recognized as an important epitranscriptomic mechanism in colorectal cancer (CRC). We aimed to exploit whether and how tumor-intrinsic m6A modification driven by methyltransferase like 3 (METTL3) can dictate the immune landscape of CRC.METHODSMettl3 knockout mice, CD34+ humanized mice, and different syngeneic mice models were used. Immune cell composition and cytokine level were analyzed by flow cytometry and Cytokine 23-Plex immunoassay, respectively. M6A sequencing and RNA sequencing were performed to identify downstream targets and pathways of METTL3. Human CRC specimens (n = 176) were used to evaluate correlation between METTL3 expression and myeloid-derived suppressor cell (MDSC) infiltration.RESULTSWe demonstrated that silencing of METTL3 in CRC cells reduced MDSC accumulation to sustain activation and proliferation of CD4+ and CD8+ T cells, and eventually suppressed CRC in ApcMin/+Mettl3+/- mice, CD34+ humanized mice, and syngeneic mice models. Mechanistically, METTL3 activated the m6A-BHLHE41-CXCL1 axis by analysis of m6A sequencing, RNA sequencing, and cytokine arrays. METTL3 promoted BHLHE41 expression in an m6A-dependent manner, which subsequently induced CXCL1 transcription to enhance MDSC migration in vitro. However, the effect was negligible on BHLHE41 depletion, CXCL1 protein or CXCR2 inhibitor SB265610 administration, inferring that METTL3 promotes MDSC migration via BHLHE41-CXCL1/CXCR2. Consistently, depletion of MDSCs by anti-Gr1 antibody or SB265610 blocked the tumor-promoting effect of METTL3 in vivo. Importantly, targeting METTL3 by METTL3-single guide RNA or specific inhibitor potentiated the effect of anti-programmed cell death protein 1 (anti-PD1) treatment.CONCLUSIONSOur study identifies METTL3 as a potential therapeutic target for CRC immunotherapy whose inhibition reverses immune suppression through the m6A-BHLHE41-CXCL1 axis. METTL3 inhibition plus anti-PD1 treatment shows promising antitumor efficacy against CRC.</description><issn>0016-5085</issn><issn>1528-0012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkMFLwzAchYMoOKf_gYccvbT7JWnT9FjLdIOKIhW8hbRLZ0bbaJKC--_tmDx47_LxDh9C9wRiAilbHeK98sHZmAKlMfAYaHKBFiSlIgIg9BIt5uFRCiK9RjfeHwAgZ4IskHlZ13XF8Hb8Mo0JHhdjMGEarMPbYZhGE464OeJaub0OZtzjgRfR46barBMSlZ9lRVZzv1Nc_BqPg8Vvzg42aFza3jrdBtXjUo2tdrfoqlO913f_u0QfT-u63ETV6_O2LKqopRxClLa5UrtdN0fQrBNil4oubZOmYYQToUjCWMdpmzENWcMETxhVoAnpaEobIdgSPZx_v539mbQPcjC-1X2vRm0nLynPeE6TPIMZTc5o66z3Tnfy25lBuaMkIE9m5UGezcqTWQlczmbZH449bEw</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Chen, Huarong</creator><creator>Pan, Yasi</creator><creator>Zhou, Qiming</creator><creator>Liang, Cong</creator><creator>Wong, Chi-Chun</creator><creator>Zhou, Yunfei</creator><creator>Huang, Dan</creator><creator>Liu, Weixin</creator><creator>Zhai, Jianning</creator><creator>Gou, Hongyan</creator><creator>Su, Hao</creator><creator>Zhang, Xiaoting</creator><creator>Xu, Hongzhi</creator><creator>Wang, Yifei</creator><creator>Kang, Wei</creator><creator>Kei Wu, William Ka</creator><creator>Yu, Jun</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5008-2153</orcidid></search><sort><creationdate>202210</creationdate><title>METTL3 Inhibits Antitumor Immunity by Targeting m6A-BHLHE41-CXCL1/CXCR2 Axis to Promote Colorectal Cancer</title><author>Chen, Huarong ; Pan, Yasi ; Zhou, Qiming ; Liang, Cong ; Wong, Chi-Chun ; Zhou, Yunfei ; Huang, Dan ; Liu, Weixin ; Zhai, Jianning ; Gou, Hongyan ; Su, Hao ; Zhang, Xiaoting ; Xu, Hongzhi ; Wang, Yifei ; Kang, Wei ; Kei Wu, William Ka ; Yu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-5c9aaddfdfd827f88d58f5c4bb31618a1433f62c73e07b386432a0e11f252b883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Huarong</creatorcontrib><creatorcontrib>Pan, Yasi</creatorcontrib><creatorcontrib>Zhou, Qiming</creatorcontrib><creatorcontrib>Liang, Cong</creatorcontrib><creatorcontrib>Wong, Chi-Chun</creatorcontrib><creatorcontrib>Zhou, Yunfei</creatorcontrib><creatorcontrib>Huang, Dan</creatorcontrib><creatorcontrib>Liu, Weixin</creatorcontrib><creatorcontrib>Zhai, Jianning</creatorcontrib><creatorcontrib>Gou, Hongyan</creatorcontrib><creatorcontrib>Su, Hao</creatorcontrib><creatorcontrib>Zhang, Xiaoting</creatorcontrib><creatorcontrib>Xu, Hongzhi</creatorcontrib><creatorcontrib>Wang, Yifei</creatorcontrib><creatorcontrib>Kang, Wei</creatorcontrib><creatorcontrib>Kei Wu, William Ka</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Gastroenterology (New York, N.Y. 1943)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Huarong</au><au>Pan, Yasi</au><au>Zhou, Qiming</au><au>Liang, Cong</au><au>Wong, Chi-Chun</au><au>Zhou, Yunfei</au><au>Huang, Dan</au><au>Liu, Weixin</au><au>Zhai, Jianning</au><au>Gou, Hongyan</au><au>Su, Hao</au><au>Zhang, Xiaoting</au><au>Xu, Hongzhi</au><au>Wang, Yifei</au><au>Kang, Wei</au><au>Kei Wu, William Ka</au><au>Yu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>METTL3 Inhibits Antitumor Immunity by Targeting m6A-BHLHE41-CXCL1/CXCR2 Axis to Promote Colorectal Cancer</atitle><jtitle>Gastroenterology (New York, N.Y. 1943)</jtitle><date>2022-10</date><risdate>2022</risdate><volume>163</volume><issue>4</issue><spage>891</spage><epage>907</epage><pages>891-907</pages><issn>0016-5085</issn><eissn>1528-0012</eissn><abstract>BACKGROUND & AIMSN6-Methyladenosine (m6A) is the most prevalent RNA modification and recognized as an important epitranscriptomic mechanism in colorectal cancer (CRC). We aimed to exploit whether and how tumor-intrinsic m6A modification driven by methyltransferase like 3 (METTL3) can dictate the immune landscape of CRC.METHODSMettl3 knockout mice, CD34+ humanized mice, and different syngeneic mice models were used. Immune cell composition and cytokine level were analyzed by flow cytometry and Cytokine 23-Plex immunoassay, respectively. M6A sequencing and RNA sequencing were performed to identify downstream targets and pathways of METTL3. Human CRC specimens (n = 176) were used to evaluate correlation between METTL3 expression and myeloid-derived suppressor cell (MDSC) infiltration.RESULTSWe demonstrated that silencing of METTL3 in CRC cells reduced MDSC accumulation to sustain activation and proliferation of CD4+ and CD8+ T cells, and eventually suppressed CRC in ApcMin/+Mettl3+/- mice, CD34+ humanized mice, and syngeneic mice models. Mechanistically, METTL3 activated the m6A-BHLHE41-CXCL1 axis by analysis of m6A sequencing, RNA sequencing, and cytokine arrays. METTL3 promoted BHLHE41 expression in an m6A-dependent manner, which subsequently induced CXCL1 transcription to enhance MDSC migration in vitro. However, the effect was negligible on BHLHE41 depletion, CXCL1 protein or CXCR2 inhibitor SB265610 administration, inferring that METTL3 promotes MDSC migration via BHLHE41-CXCL1/CXCR2. Consistently, depletion of MDSCs by anti-Gr1 antibody or SB265610 blocked the tumor-promoting effect of METTL3 in vivo. Importantly, targeting METTL3 by METTL3-single guide RNA or specific inhibitor potentiated the effect of anti-programmed cell death protein 1 (anti-PD1) treatment.CONCLUSIONSOur study identifies METTL3 as a potential therapeutic target for CRC immunotherapy whose inhibition reverses immune suppression through the m6A-BHLHE41-CXCL1 axis. METTL3 inhibition plus anti-PD1 treatment shows promising antitumor efficacy against CRC.</abstract><doi>10.1053/j.gastro.2022.06.024</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5008-2153</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-5085 |
ispartof | Gastroenterology (New York, N.Y. 1943), 2022-10, Vol.163 (4), p.891-907 |
issn | 0016-5085 1528-0012 |
language | eng |
recordid | cdi_proquest_miscellaneous_2676924970 |
source | ScienceDirect Journals (5 years ago - present); Alma/SFX Local Collection |
title | METTL3 Inhibits Antitumor Immunity by Targeting m6A-BHLHE41-CXCL1/CXCR2 Axis to Promote Colorectal Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A33%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=METTL3%20Inhibits%20Antitumor%20Immunity%20by%20Targeting%20m6A-BHLHE41-CXCL1/CXCR2%20Axis%20to%20Promote%20Colorectal%20Cancer&rft.jtitle=Gastroenterology%20(New%20York,%20N.Y.%201943)&rft.au=Chen,%20Huarong&rft.date=2022-10&rft.volume=163&rft.issue=4&rft.spage=891&rft.epage=907&rft.pages=891-907&rft.issn=0016-5085&rft.eissn=1528-0012&rft_id=info:doi/10.1053/j.gastro.2022.06.024&rft_dat=%3Cproquest_cross%3E2676924970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676924970&rft_id=info:pmid/&rfr_iscdi=true |