Impact of schizophrenia GWAS loci converge onto distinct pathways in cortical interneurons vs glutamatergic neurons during development

Remarkable advances have been made in schizophrenia (SCZ) GWAS, but gleaning biological insight from these loci is challenging. Genetic influences on gene expression (e.g., eQTLs) are cell type-specific, but most studies that attempt to clarify GWAS loci’s influence on gene expression have employed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular psychiatry 2022-10, Vol.27 (10), p.4218-4233
Hauptverfasser: Liu, Dongxin, Zinski, Amy, Mishra, Akanksha, Noh, Haneul, Park, Gun-Hoo, Qin, Yiren, Olorife, Oshoname, Park, James M., Abani, Chiderah P., Park, Joy S., Fung, Janice, Sawaqed, Farah, Coyle, Joseph T., Stahl, Eli, Bendl, Jaroslav, Fullard, John F., Roussos, Panos, Zhang, Xiaolei, Stanton, Patric K., Yin, Changhong, Huang, Weihua, Kim, Hae-Young, Won, Hyejung, Cho, Jun-Hyeong, Chung, Sangmi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4233
container_issue 10
container_start_page 4218
container_title Molecular psychiatry
container_volume 27
creator Liu, Dongxin
Zinski, Amy
Mishra, Akanksha
Noh, Haneul
Park, Gun-Hoo
Qin, Yiren
Olorife, Oshoname
Park, James M.
Abani, Chiderah P.
Park, Joy S.
Fung, Janice
Sawaqed, Farah
Coyle, Joseph T.
Stahl, Eli
Bendl, Jaroslav
Fullard, John F.
Roussos, Panos
Zhang, Xiaolei
Stanton, Patric K.
Yin, Changhong
Huang, Weihua
Kim, Hae-Young
Won, Hyejung
Cho, Jun-Hyeong
Chung, Sangmi
description Remarkable advances have been made in schizophrenia (SCZ) GWAS, but gleaning biological insight from these loci is challenging. Genetic influences on gene expression (e.g., eQTLs) are cell type-specific, but most studies that attempt to clarify GWAS loci’s influence on gene expression have employed tissues with mixed cell compositions that can obscure cell-specific effects. Furthermore, enriched SCZ heritability in the fetal brain underscores the need to study the impact of SCZ risk loci in specific developing neurons. MGE-derived cortical interneurons (cINs) are consistently affected in SCZ brains and show enriched SCZ heritability in human fetal brains. We identified SCZ GWAS risk genes that are dysregulated in iPSC-derived homogeneous populations of developing SCZ cINs. These SCZ GWAS loci differential expression (DE) genes converge on the PKC pathway. Their disruption results in PKC hyperactivity in developing cINs, leading to arborization deficits. We show that the fine-mapped GWAS locus in the ATP2A2 gene of the PKC pathway harbors enhancer marks by ATACseq and ChIPseq, and regulates ATP2A2 expression. We also generated developing glutamatergic neurons (GNs), another population with enriched SCZ heritability, and confirmed their functionality after transplantation into the mouse brain. Then, we identified SCZ GWAS risk genes that are dysregulated in developing SCZ GNs. GN-specific SCZ GWAS loci DE genes converge on the ion transporter pathway, distinct from those for cINs. Disruption of the pathway gene CACNA1D resulted in deficits of Ca 2+ currents in developing GNs, suggesting compromised neuronal function by GWAS loci pathway deficits during development. This study allows us to identify cell type-specific and developmental stage-specific mechanisms of SCZ risk gene function, and may aid in identifying mechanism-based novel therapeutic targets.
doi_str_mv 10.1038/s41380-022-01654-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2676923043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2676923043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-ce8c88884af743ad39616ef775e6a6c6cbdd8105e94967dc68f0fd8c41db2c553</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EomXgBVggS2y6CbXjv2RZVbRUqsSiIJaWx76ZcZXYwXYGdR6A58bDtCCxwBtf-X7nXOsehN5S8oES1p1nTllHGtK2DaFS8Gb_DJ1SrmQjhOqe15qJvuG04yfoVc73hBya4iU6YUIRKnp1in7eTLOxBccBZ7v1-zhvEwRv8PW3izs8RuuxjWEHaQM4hhKx87n4UBWzKdsf5iFjHyqSirdmrHWBFGBJMWS8y3gzLsVMpj5uvMVPDbckHzbYwQ7GOE8Qymv0YjBjhjeP9wp9vfr45fJTc_v5-uby4raxTInSWOhsVw83g-LMONZLKmFQSoA00kq7dq6jREDPe6mcld1ABtdZTt26tUKwFTo7-s4pfl8gFz35bGEcTYC4ZN1KJfuWEc4q-v4f9D4uKdTf6VZxUbdKKrlC7ZGyKeacYNBz8pNJD5oSfUhJH1PSNSX9OyW9r6J3j9bLegL3R_IUSwXYEcjzYVOQ_s7-j-0vR7WhJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2745184092</pqid></control><display><type>article</type><title>Impact of schizophrenia GWAS loci converge onto distinct pathways in cortical interneurons vs glutamatergic neurons during development</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Liu, Dongxin ; Zinski, Amy ; Mishra, Akanksha ; Noh, Haneul ; Park, Gun-Hoo ; Qin, Yiren ; Olorife, Oshoname ; Park, James M. ; Abani, Chiderah P. ; Park, Joy S. ; Fung, Janice ; Sawaqed, Farah ; Coyle, Joseph T. ; Stahl, Eli ; Bendl, Jaroslav ; Fullard, John F. ; Roussos, Panos ; Zhang, Xiaolei ; Stanton, Patric K. ; Yin, Changhong ; Huang, Weihua ; Kim, Hae-Young ; Won, Hyejung ; Cho, Jun-Hyeong ; Chung, Sangmi</creator><creatorcontrib>Liu, Dongxin ; Zinski, Amy ; Mishra, Akanksha ; Noh, Haneul ; Park, Gun-Hoo ; Qin, Yiren ; Olorife, Oshoname ; Park, James M. ; Abani, Chiderah P. ; Park, Joy S. ; Fung, Janice ; Sawaqed, Farah ; Coyle, Joseph T. ; Stahl, Eli ; Bendl, Jaroslav ; Fullard, John F. ; Roussos, Panos ; Zhang, Xiaolei ; Stanton, Patric K. ; Yin, Changhong ; Huang, Weihua ; Kim, Hae-Young ; Won, Hyejung ; Cho, Jun-Hyeong ; Chung, Sangmi</creatorcontrib><description>Remarkable advances have been made in schizophrenia (SCZ) GWAS, but gleaning biological insight from these loci is challenging. Genetic influences on gene expression (e.g., eQTLs) are cell type-specific, but most studies that attempt to clarify GWAS loci’s influence on gene expression have employed tissues with mixed cell compositions that can obscure cell-specific effects. Furthermore, enriched SCZ heritability in the fetal brain underscores the need to study the impact of SCZ risk loci in specific developing neurons. MGE-derived cortical interneurons (cINs) are consistently affected in SCZ brains and show enriched SCZ heritability in human fetal brains. We identified SCZ GWAS risk genes that are dysregulated in iPSC-derived homogeneous populations of developing SCZ cINs. These SCZ GWAS loci differential expression (DE) genes converge on the PKC pathway. Their disruption results in PKC hyperactivity in developing cINs, leading to arborization deficits. We show that the fine-mapped GWAS locus in the ATP2A2 gene of the PKC pathway harbors enhancer marks by ATACseq and ChIPseq, and regulates ATP2A2 expression. We also generated developing glutamatergic neurons (GNs), another population with enriched SCZ heritability, and confirmed their functionality after transplantation into the mouse brain. Then, we identified SCZ GWAS risk genes that are dysregulated in developing SCZ GNs. GN-specific SCZ GWAS loci DE genes converge on the ion transporter pathway, distinct from those for cINs. Disruption of the pathway gene CACNA1D resulted in deficits of Ca 2+ currents in developing GNs, suggesting compromised neuronal function by GWAS loci pathway deficits during development. This study allows us to identify cell type-specific and developmental stage-specific mechanisms of SCZ risk gene function, and may aid in identifying mechanism-based novel therapeutic targets.</description><identifier>ISSN: 1359-4184</identifier><identifier>ISSN: 1476-5578</identifier><identifier>EISSN: 1476-5578</identifier><identifier>DOI: 10.1038/s41380-022-01654-z</identifier><identifier>PMID: 35701597</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/100 ; 13/51 ; 14/19 ; 14/35 ; 38/22 ; 38/39 ; 38/43 ; 38/47 ; 38/77 ; 38/89 ; 45/44 ; 45/91 ; 631/378 ; 631/477 ; 631/532 ; 82/29 ; 82/51 ; 9/74 ; 96/44 ; Animals ; ATP2A2 gene ; Behavioral Sciences ; Biological Psychology ; Brain - metabolism ; Calcium currents ; Fetuses ; Gene expression ; Genetic Predisposition to Disease - genetics ; Genome-Wide Association Study - methods ; Glutamatergic transmission ; Heritability ; Humans ; Hyperactivity ; Interneurons ; Interneurons - metabolism ; Medicine ; Medicine &amp; Public Health ; Mental disorders ; Mice ; Neurogenesis ; Neurons - metabolism ; Neurosciences ; Pharmacotherapy ; Psychiatry ; Schizophrenia ; Schizophrenia - genetics ; Schizophrenia - metabolism ; Therapeutic targets ; Transplantation</subject><ispartof>Molecular psychiatry, 2022-10, Vol.27 (10), p.4218-4233</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-ce8c88884af743ad39616ef775e6a6c6cbdd8105e94967dc68f0fd8c41db2c553</citedby><cites>FETCH-LOGICAL-c375t-ce8c88884af743ad39616ef775e6a6c6cbdd8105e94967dc68f0fd8c41db2c553</cites><orcidid>0000-0002-6844-3583 ; 0000-0002-8737-9978 ; 0000-0001-9989-2720 ; 0000-0002-1718-5043 ; 0000-0002-4640-6239 ; 0000-0003-3651-0566 ; 0000-0001-9874-2907 ; 0000-0001-7916-6625 ; 0000-0001-7860-3459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35701597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Dongxin</creatorcontrib><creatorcontrib>Zinski, Amy</creatorcontrib><creatorcontrib>Mishra, Akanksha</creatorcontrib><creatorcontrib>Noh, Haneul</creatorcontrib><creatorcontrib>Park, Gun-Hoo</creatorcontrib><creatorcontrib>Qin, Yiren</creatorcontrib><creatorcontrib>Olorife, Oshoname</creatorcontrib><creatorcontrib>Park, James M.</creatorcontrib><creatorcontrib>Abani, Chiderah P.</creatorcontrib><creatorcontrib>Park, Joy S.</creatorcontrib><creatorcontrib>Fung, Janice</creatorcontrib><creatorcontrib>Sawaqed, Farah</creatorcontrib><creatorcontrib>Coyle, Joseph T.</creatorcontrib><creatorcontrib>Stahl, Eli</creatorcontrib><creatorcontrib>Bendl, Jaroslav</creatorcontrib><creatorcontrib>Fullard, John F.</creatorcontrib><creatorcontrib>Roussos, Panos</creatorcontrib><creatorcontrib>Zhang, Xiaolei</creatorcontrib><creatorcontrib>Stanton, Patric K.</creatorcontrib><creatorcontrib>Yin, Changhong</creatorcontrib><creatorcontrib>Huang, Weihua</creatorcontrib><creatorcontrib>Kim, Hae-Young</creatorcontrib><creatorcontrib>Won, Hyejung</creatorcontrib><creatorcontrib>Cho, Jun-Hyeong</creatorcontrib><creatorcontrib>Chung, Sangmi</creatorcontrib><title>Impact of schizophrenia GWAS loci converge onto distinct pathways in cortical interneurons vs glutamatergic neurons during development</title><title>Molecular psychiatry</title><addtitle>Mol Psychiatry</addtitle><addtitle>Mol Psychiatry</addtitle><description>Remarkable advances have been made in schizophrenia (SCZ) GWAS, but gleaning biological insight from these loci is challenging. Genetic influences on gene expression (e.g., eQTLs) are cell type-specific, but most studies that attempt to clarify GWAS loci’s influence on gene expression have employed tissues with mixed cell compositions that can obscure cell-specific effects. Furthermore, enriched SCZ heritability in the fetal brain underscores the need to study the impact of SCZ risk loci in specific developing neurons. MGE-derived cortical interneurons (cINs) are consistently affected in SCZ brains and show enriched SCZ heritability in human fetal brains. We identified SCZ GWAS risk genes that are dysregulated in iPSC-derived homogeneous populations of developing SCZ cINs. These SCZ GWAS loci differential expression (DE) genes converge on the PKC pathway. Their disruption results in PKC hyperactivity in developing cINs, leading to arborization deficits. We show that the fine-mapped GWAS locus in the ATP2A2 gene of the PKC pathway harbors enhancer marks by ATACseq and ChIPseq, and regulates ATP2A2 expression. We also generated developing glutamatergic neurons (GNs), another population with enriched SCZ heritability, and confirmed their functionality after transplantation into the mouse brain. Then, we identified SCZ GWAS risk genes that are dysregulated in developing SCZ GNs. GN-specific SCZ GWAS loci DE genes converge on the ion transporter pathway, distinct from those for cINs. Disruption of the pathway gene CACNA1D resulted in deficits of Ca 2+ currents in developing GNs, suggesting compromised neuronal function by GWAS loci pathway deficits during development. This study allows us to identify cell type-specific and developmental stage-specific mechanisms of SCZ risk gene function, and may aid in identifying mechanism-based novel therapeutic targets.</description><subject>13/1</subject><subject>13/100</subject><subject>13/51</subject><subject>14/19</subject><subject>14/35</subject><subject>38/22</subject><subject>38/39</subject><subject>38/43</subject><subject>38/47</subject><subject>38/77</subject><subject>38/89</subject><subject>45/44</subject><subject>45/91</subject><subject>631/378</subject><subject>631/477</subject><subject>631/532</subject><subject>82/29</subject><subject>82/51</subject><subject>9/74</subject><subject>96/44</subject><subject>Animals</subject><subject>ATP2A2 gene</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Brain - metabolism</subject><subject>Calcium currents</subject><subject>Fetuses</subject><subject>Gene expression</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Genome-Wide Association Study - methods</subject><subject>Glutamatergic transmission</subject><subject>Heritability</subject><subject>Humans</subject><subject>Hyperactivity</subject><subject>Interneurons</subject><subject>Interneurons - metabolism</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mental disorders</subject><subject>Mice</subject><subject>Neurogenesis</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Pharmacotherapy</subject><subject>Psychiatry</subject><subject>Schizophrenia</subject><subject>Schizophrenia - genetics</subject><subject>Schizophrenia - metabolism</subject><subject>Therapeutic targets</subject><subject>Transplantation</subject><issn>1359-4184</issn><issn>1476-5578</issn><issn>1476-5578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAUhS0EomXgBVggS2y6CbXjv2RZVbRUqsSiIJaWx76ZcZXYwXYGdR6A58bDtCCxwBtf-X7nXOsehN5S8oES1p1nTllHGtK2DaFS8Gb_DJ1SrmQjhOqe15qJvuG04yfoVc73hBya4iU6YUIRKnp1in7eTLOxBccBZ7v1-zhvEwRv8PW3izs8RuuxjWEHaQM4hhKx87n4UBWzKdsf5iFjHyqSirdmrHWBFGBJMWS8y3gzLsVMpj5uvMVPDbckHzbYwQ7GOE8Qymv0YjBjhjeP9wp9vfr45fJTc_v5-uby4raxTInSWOhsVw83g-LMONZLKmFQSoA00kq7dq6jREDPe6mcld1ABtdZTt26tUKwFTo7-s4pfl8gFz35bGEcTYC4ZN1KJfuWEc4q-v4f9D4uKdTf6VZxUbdKKrlC7ZGyKeacYNBz8pNJD5oSfUhJH1PSNSX9OyW9r6J3j9bLegL3R_IUSwXYEcjzYVOQ_s7-j-0vR7WhJg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Liu, Dongxin</creator><creator>Zinski, Amy</creator><creator>Mishra, Akanksha</creator><creator>Noh, Haneul</creator><creator>Park, Gun-Hoo</creator><creator>Qin, Yiren</creator><creator>Olorife, Oshoname</creator><creator>Park, James M.</creator><creator>Abani, Chiderah P.</creator><creator>Park, Joy S.</creator><creator>Fung, Janice</creator><creator>Sawaqed, Farah</creator><creator>Coyle, Joseph T.</creator><creator>Stahl, Eli</creator><creator>Bendl, Jaroslav</creator><creator>Fullard, John F.</creator><creator>Roussos, Panos</creator><creator>Zhang, Xiaolei</creator><creator>Stanton, Patric K.</creator><creator>Yin, Changhong</creator><creator>Huang, Weihua</creator><creator>Kim, Hae-Young</creator><creator>Won, Hyejung</creator><creator>Cho, Jun-Hyeong</creator><creator>Chung, Sangmi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6844-3583</orcidid><orcidid>https://orcid.org/0000-0002-8737-9978</orcidid><orcidid>https://orcid.org/0000-0001-9989-2720</orcidid><orcidid>https://orcid.org/0000-0002-1718-5043</orcidid><orcidid>https://orcid.org/0000-0002-4640-6239</orcidid><orcidid>https://orcid.org/0000-0003-3651-0566</orcidid><orcidid>https://orcid.org/0000-0001-9874-2907</orcidid><orcidid>https://orcid.org/0000-0001-7916-6625</orcidid><orcidid>https://orcid.org/0000-0001-7860-3459</orcidid></search><sort><creationdate>20221001</creationdate><title>Impact of schizophrenia GWAS loci converge onto distinct pathways in cortical interneurons vs glutamatergic neurons during development</title><author>Liu, Dongxin ; Zinski, Amy ; Mishra, Akanksha ; Noh, Haneul ; Park, Gun-Hoo ; Qin, Yiren ; Olorife, Oshoname ; Park, James M. ; Abani, Chiderah P. ; Park, Joy S. ; Fung, Janice ; Sawaqed, Farah ; Coyle, Joseph T. ; Stahl, Eli ; Bendl, Jaroslav ; Fullard, John F. ; Roussos, Panos ; Zhang, Xiaolei ; Stanton, Patric K. ; Yin, Changhong ; Huang, Weihua ; Kim, Hae-Young ; Won, Hyejung ; Cho, Jun-Hyeong ; Chung, Sangmi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-ce8c88884af743ad39616ef775e6a6c6cbdd8105e94967dc68f0fd8c41db2c553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>13/1</topic><topic>13/100</topic><topic>13/51</topic><topic>14/19</topic><topic>14/35</topic><topic>38/22</topic><topic>38/39</topic><topic>38/43</topic><topic>38/47</topic><topic>38/77</topic><topic>38/89</topic><topic>45/44</topic><topic>45/91</topic><topic>631/378</topic><topic>631/477</topic><topic>631/532</topic><topic>82/29</topic><topic>82/51</topic><topic>9/74</topic><topic>96/44</topic><topic>Animals</topic><topic>ATP2A2 gene</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Brain - metabolism</topic><topic>Calcium currents</topic><topic>Fetuses</topic><topic>Gene expression</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Genome-Wide Association Study - methods</topic><topic>Glutamatergic transmission</topic><topic>Heritability</topic><topic>Humans</topic><topic>Hyperactivity</topic><topic>Interneurons</topic><topic>Interneurons - metabolism</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mental disorders</topic><topic>Mice</topic><topic>Neurogenesis</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Pharmacotherapy</topic><topic>Psychiatry</topic><topic>Schizophrenia</topic><topic>Schizophrenia - genetics</topic><topic>Schizophrenia - metabolism</topic><topic>Therapeutic targets</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dongxin</creatorcontrib><creatorcontrib>Zinski, Amy</creatorcontrib><creatorcontrib>Mishra, Akanksha</creatorcontrib><creatorcontrib>Noh, Haneul</creatorcontrib><creatorcontrib>Park, Gun-Hoo</creatorcontrib><creatorcontrib>Qin, Yiren</creatorcontrib><creatorcontrib>Olorife, Oshoname</creatorcontrib><creatorcontrib>Park, James M.</creatorcontrib><creatorcontrib>Abani, Chiderah P.</creatorcontrib><creatorcontrib>Park, Joy S.</creatorcontrib><creatorcontrib>Fung, Janice</creatorcontrib><creatorcontrib>Sawaqed, Farah</creatorcontrib><creatorcontrib>Coyle, Joseph T.</creatorcontrib><creatorcontrib>Stahl, Eli</creatorcontrib><creatorcontrib>Bendl, Jaroslav</creatorcontrib><creatorcontrib>Fullard, John F.</creatorcontrib><creatorcontrib>Roussos, Panos</creatorcontrib><creatorcontrib>Zhang, Xiaolei</creatorcontrib><creatorcontrib>Stanton, Patric K.</creatorcontrib><creatorcontrib>Yin, Changhong</creatorcontrib><creatorcontrib>Huang, Weihua</creatorcontrib><creatorcontrib>Kim, Hae-Young</creatorcontrib><creatorcontrib>Won, Hyejung</creatorcontrib><creatorcontrib>Cho, Jun-Hyeong</creatorcontrib><creatorcontrib>Chung, Sangmi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dongxin</au><au>Zinski, Amy</au><au>Mishra, Akanksha</au><au>Noh, Haneul</au><au>Park, Gun-Hoo</au><au>Qin, Yiren</au><au>Olorife, Oshoname</au><au>Park, James M.</au><au>Abani, Chiderah P.</au><au>Park, Joy S.</au><au>Fung, Janice</au><au>Sawaqed, Farah</au><au>Coyle, Joseph T.</au><au>Stahl, Eli</au><au>Bendl, Jaroslav</au><au>Fullard, John F.</au><au>Roussos, Panos</au><au>Zhang, Xiaolei</au><au>Stanton, Patric K.</au><au>Yin, Changhong</au><au>Huang, Weihua</au><au>Kim, Hae-Young</au><au>Won, Hyejung</au><au>Cho, Jun-Hyeong</au><au>Chung, Sangmi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of schizophrenia GWAS loci converge onto distinct pathways in cortical interneurons vs glutamatergic neurons during development</atitle><jtitle>Molecular psychiatry</jtitle><stitle>Mol Psychiatry</stitle><addtitle>Mol Psychiatry</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>27</volume><issue>10</issue><spage>4218</spage><epage>4233</epage><pages>4218-4233</pages><issn>1359-4184</issn><issn>1476-5578</issn><eissn>1476-5578</eissn><abstract>Remarkable advances have been made in schizophrenia (SCZ) GWAS, but gleaning biological insight from these loci is challenging. Genetic influences on gene expression (e.g., eQTLs) are cell type-specific, but most studies that attempt to clarify GWAS loci’s influence on gene expression have employed tissues with mixed cell compositions that can obscure cell-specific effects. Furthermore, enriched SCZ heritability in the fetal brain underscores the need to study the impact of SCZ risk loci in specific developing neurons. MGE-derived cortical interneurons (cINs) are consistently affected in SCZ brains and show enriched SCZ heritability in human fetal brains. We identified SCZ GWAS risk genes that are dysregulated in iPSC-derived homogeneous populations of developing SCZ cINs. These SCZ GWAS loci differential expression (DE) genes converge on the PKC pathway. Their disruption results in PKC hyperactivity in developing cINs, leading to arborization deficits. We show that the fine-mapped GWAS locus in the ATP2A2 gene of the PKC pathway harbors enhancer marks by ATACseq and ChIPseq, and regulates ATP2A2 expression. We also generated developing glutamatergic neurons (GNs), another population with enriched SCZ heritability, and confirmed their functionality after transplantation into the mouse brain. Then, we identified SCZ GWAS risk genes that are dysregulated in developing SCZ GNs. GN-specific SCZ GWAS loci DE genes converge on the ion transporter pathway, distinct from those for cINs. Disruption of the pathway gene CACNA1D resulted in deficits of Ca 2+ currents in developing GNs, suggesting compromised neuronal function by GWAS loci pathway deficits during development. This study allows us to identify cell type-specific and developmental stage-specific mechanisms of SCZ risk gene function, and may aid in identifying mechanism-based novel therapeutic targets.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35701597</pmid><doi>10.1038/s41380-022-01654-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6844-3583</orcidid><orcidid>https://orcid.org/0000-0002-8737-9978</orcidid><orcidid>https://orcid.org/0000-0001-9989-2720</orcidid><orcidid>https://orcid.org/0000-0002-1718-5043</orcidid><orcidid>https://orcid.org/0000-0002-4640-6239</orcidid><orcidid>https://orcid.org/0000-0003-3651-0566</orcidid><orcidid>https://orcid.org/0000-0001-9874-2907</orcidid><orcidid>https://orcid.org/0000-0001-7916-6625</orcidid><orcidid>https://orcid.org/0000-0001-7860-3459</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-4184
ispartof Molecular psychiatry, 2022-10, Vol.27 (10), p.4218-4233
issn 1359-4184
1476-5578
1476-5578
language eng
recordid cdi_proquest_miscellaneous_2676923043
source MEDLINE; Alma/SFX Local Collection
subjects 13/1
13/100
13/51
14/19
14/35
38/22
38/39
38/43
38/47
38/77
38/89
45/44
45/91
631/378
631/477
631/532
82/29
82/51
9/74
96/44
Animals
ATP2A2 gene
Behavioral Sciences
Biological Psychology
Brain - metabolism
Calcium currents
Fetuses
Gene expression
Genetic Predisposition to Disease - genetics
Genome-Wide Association Study - methods
Glutamatergic transmission
Heritability
Humans
Hyperactivity
Interneurons
Interneurons - metabolism
Medicine
Medicine & Public Health
Mental disorders
Mice
Neurogenesis
Neurons - metabolism
Neurosciences
Pharmacotherapy
Psychiatry
Schizophrenia
Schizophrenia - genetics
Schizophrenia - metabolism
Therapeutic targets
Transplantation
title Impact of schizophrenia GWAS loci converge onto distinct pathways in cortical interneurons vs glutamatergic neurons during development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20schizophrenia%20GWAS%20loci%20converge%20onto%20distinct%20pathways%20in%20cortical%20interneurons%20vs%20glutamatergic%20neurons%20during%20development&rft.jtitle=Molecular%20psychiatry&rft.au=Liu,%20Dongxin&rft.date=2022-10-01&rft.volume=27&rft.issue=10&rft.spage=4218&rft.epage=4233&rft.pages=4218-4233&rft.issn=1359-4184&rft.eissn=1476-5578&rft_id=info:doi/10.1038/s41380-022-01654-z&rft_dat=%3Cproquest_cross%3E2676923043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2745184092&rft_id=info:pmid/35701597&rfr_iscdi=true