MRI characteristics of breast edema for assessing axillary lymph node burden in early-stage breast cancer: a retrospective bicentric study

Objectives To investigate whether breast edema characteristics at preoperative T2-weighted imaging (T2WI) could help evaluate axillary lymph node (ALN) burden in patients with early-stage breast cancer. Methods This retrospective study included women with clinical T1 and T2 stage breast cancer and p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2022-12, Vol.32 (12), p.8213-8225
Hauptverfasser: Xu, Zeyan, Ding, Yingying, Zhao, Ke, Han, Chu, Shi, Zhenwei, Cui, Yanfen, Liu, Chunling, Lin, Huan, Pan, Xipeng, Li, Pinxiong, Chen, Minglei, Wang, Huihui, Deng, Xiaohui, Liang, Changhong, Xie, Yu, Liu, Zaiyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8225
container_issue 12
container_start_page 8213
container_title European radiology
container_volume 32
creator Xu, Zeyan
Ding, Yingying
Zhao, Ke
Han, Chu
Shi, Zhenwei
Cui, Yanfen
Liu, Chunling
Lin, Huan
Pan, Xipeng
Li, Pinxiong
Chen, Minglei
Wang, Huihui
Deng, Xiaohui
Liang, Changhong
Xie, Yu
Liu, Zaiyi
description Objectives To investigate whether breast edema characteristics at preoperative T2-weighted imaging (T2WI) could help evaluate axillary lymph node (ALN) burden in patients with early-stage breast cancer. Methods This retrospective study included women with clinical T1 and T2 stage breast cancer and preoperative MRI examination in two independent cohorts from May 2014 to December 2020. Low (< 3 LNs+) and high (≥ 3 LNs+) pathological ALN (pALN) burden were recorded as endpoint. Breast edema score (BES) was evaluated at T2WI. Univariable and multivariable analyses were performed by the logistic regression model. The added predictive value of BES was examined utilizing the area under the curve (AUC), net reclassification improvement (NRI), and integrated discrimination improvement (IDI). Results A total of 1092 patients were included in this study. BES was identified as the independent predictor of pALN burden in primary ( n = 677) and validation ( n = 415) cohorts. The analysis using MRI-ALN status showed that BES significantly improved the predictive performance of pALN burden (AUC: 0.65 vs 0.71, p < 0.001; IDI = 0.045, p < 0.001; continuous NRI = 0.159, p = 0.050). These results were confirmed in the validation cohort (AUC: 0.64 vs 0.69, p = 0.009; IDI = 0.050, p < 0.001; continuous NRI = 0.213, p = 0.047). Furthermore, BES was positively correlated with biologically invasive clinicopathological factors ( p < 0.05). Conclusions In individuals with early-stage breast cancer, preoperative MRI characteristics of breast edema could be a promising predictor for pALN burden, which may aid in treatment planning. Key Points • In this retrospective study of 1092 patients with early-stage breast cancer from two cohorts, the MRI characteristic of breast edema has independent and additive predictive value for assessing axillary lymph node burden . • Breast edema characteristics at T2WI positively correlated with biologically invasive clinicopathological factors, which may be useful for preoperative diagnosis and treatment planning for individual patients with breast cancer.
doi_str_mv 10.1007/s00330-022-08896-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2676922597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740743429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-d6d05ad66ff25d0e8ca80a0291fc636ca4725f9e04731637955919e8c9e31c0e3</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EIiHwAyyQJTZsGsqPbrfZoYhApCAkBGvLY1dPHPVjcLkRk0_gq2OYBBALVrZUp66rfBh7KuClADCvCEApaEDKBvreds31PXYstJKNgF7f_-t-xB4RXQGAFdo8ZEeqNaCFkMfsx4dP5zxc-uxDwZyopEB8Gfgmo6fCMeLk-bBk7omQKM1b7r-ncfR5z8f9tLvk8xKRb9YcceZp5ujzuG-o-C3ehQQ_B8yvuecZS15oh6Gkb7WcAs4lp8CprHH_mD0Y_Ej45PY8YV_O3n4-fd9cfHx3fvrmoglai9LELkLrY9cNg2wjYB98Dx6kFUPoVBe8NrIdLII2SnTK2La1wlbMohIBUJ2wF4fcXV6-rkjFTYkC1p1mXFZysjOdlbK1pqLP_0GvljXPdTonjQajlZa2UvJAhbocZRzcLqep_pAT4H6acgdTrppyv0y569r07DZ63UwYf7fcqamAOgBUS_MW85-3_xN7A5CeoIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740743429</pqid></control><display><type>article</type><title>MRI characteristics of breast edema for assessing axillary lymph node burden in early-stage breast cancer: a retrospective bicentric study</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xu, Zeyan ; Ding, Yingying ; Zhao, Ke ; Han, Chu ; Shi, Zhenwei ; Cui, Yanfen ; Liu, Chunling ; Lin, Huan ; Pan, Xipeng ; Li, Pinxiong ; Chen, Minglei ; Wang, Huihui ; Deng, Xiaohui ; Liang, Changhong ; Xie, Yu ; Liu, Zaiyi</creator><creatorcontrib>Xu, Zeyan ; Ding, Yingying ; Zhao, Ke ; Han, Chu ; Shi, Zhenwei ; Cui, Yanfen ; Liu, Chunling ; Lin, Huan ; Pan, Xipeng ; Li, Pinxiong ; Chen, Minglei ; Wang, Huihui ; Deng, Xiaohui ; Liang, Changhong ; Xie, Yu ; Liu, Zaiyi</creatorcontrib><description>Objectives To investigate whether breast edema characteristics at preoperative T2-weighted imaging (T2WI) could help evaluate axillary lymph node (ALN) burden in patients with early-stage breast cancer. Methods This retrospective study included women with clinical T1 and T2 stage breast cancer and preoperative MRI examination in two independent cohorts from May 2014 to December 2020. Low (&lt; 3 LNs+) and high (≥ 3 LNs+) pathological ALN (pALN) burden were recorded as endpoint. Breast edema score (BES) was evaluated at T2WI. Univariable and multivariable analyses were performed by the logistic regression model. The added predictive value of BES was examined utilizing the area under the curve (AUC), net reclassification improvement (NRI), and integrated discrimination improvement (IDI). Results A total of 1092 patients were included in this study. BES was identified as the independent predictor of pALN burden in primary ( n = 677) and validation ( n = 415) cohorts. The analysis using MRI-ALN status showed that BES significantly improved the predictive performance of pALN burden (AUC: 0.65 vs 0.71, p &lt; 0.001; IDI = 0.045, p &lt; 0.001; continuous NRI = 0.159, p = 0.050). These results were confirmed in the validation cohort (AUC: 0.64 vs 0.69, p = 0.009; IDI = 0.050, p &lt; 0.001; continuous NRI = 0.213, p = 0.047). Furthermore, BES was positively correlated with biologically invasive clinicopathological factors ( p &lt; 0.05). Conclusions In individuals with early-stage breast cancer, preoperative MRI characteristics of breast edema could be a promising predictor for pALN burden, which may aid in treatment planning. Key Points • In this retrospective study of 1092 patients with early-stage breast cancer from two cohorts, the MRI characteristic of breast edema has independent and additive predictive value for assessing axillary lymph node burden . • Breast edema characteristics at T2WI positively correlated with biologically invasive clinicopathological factors, which may be useful for preoperative diagnosis and treatment planning for individual patients with breast cancer.</description><identifier>ISSN: 1432-1084</identifier><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-022-08896-z</identifier><identifier>PMID: 35704112</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Axilla - pathology ; Breast ; Breast cancer ; Breast Diseases - pathology ; Breast Neoplasms - complications ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - pathology ; Diagnostic Radiology ; Edema ; Edema - diagnostic imaging ; Edema - pathology ; Female ; Humans ; Imaging ; Internal Medicine ; Interventional Radiology ; Invasiveness ; Lymph nodes ; Lymph Nodes - diagnostic imaging ; Lymph Nodes - pathology ; Lymphatic Metastasis - pathology ; Lymphatic system ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medicine ; Medicine &amp; Public Health ; Neuroradiology ; Patients ; Performance prediction ; Radiology ; Reclassification ; Regression models ; Retrospective Studies ; Ultrasound</subject><ispartof>European radiology, 2022-12, Vol.32 (12), p.8213-8225</ispartof><rights>The Author(s), under exclusive licence to European Society of Radiology 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.. corrected publication 2022</rights><rights>2022. The Author(s), under exclusive licence to European Society of Radiology.</rights><rights>The Author(s), under exclusive licence to European Society of Radiology 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. corrected publication 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-d6d05ad66ff25d0e8ca80a0291fc636ca4725f9e04731637955919e8c9e31c0e3</citedby><cites>FETCH-LOGICAL-c441t-d6d05ad66ff25d0e8ca80a0291fc636ca4725f9e04731637955919e8c9e31c0e3</cites><orcidid>0000-0003-3296-9759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-022-08896-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-022-08896-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35704112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Zeyan</creatorcontrib><creatorcontrib>Ding, Yingying</creatorcontrib><creatorcontrib>Zhao, Ke</creatorcontrib><creatorcontrib>Han, Chu</creatorcontrib><creatorcontrib>Shi, Zhenwei</creatorcontrib><creatorcontrib>Cui, Yanfen</creatorcontrib><creatorcontrib>Liu, Chunling</creatorcontrib><creatorcontrib>Lin, Huan</creatorcontrib><creatorcontrib>Pan, Xipeng</creatorcontrib><creatorcontrib>Li, Pinxiong</creatorcontrib><creatorcontrib>Chen, Minglei</creatorcontrib><creatorcontrib>Wang, Huihui</creatorcontrib><creatorcontrib>Deng, Xiaohui</creatorcontrib><creatorcontrib>Liang, Changhong</creatorcontrib><creatorcontrib>Xie, Yu</creatorcontrib><creatorcontrib>Liu, Zaiyi</creatorcontrib><title>MRI characteristics of breast edema for assessing axillary lymph node burden in early-stage breast cancer: a retrospective bicentric study</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Objectives To investigate whether breast edema characteristics at preoperative T2-weighted imaging (T2WI) could help evaluate axillary lymph node (ALN) burden in patients with early-stage breast cancer. Methods This retrospective study included women with clinical T1 and T2 stage breast cancer and preoperative MRI examination in two independent cohorts from May 2014 to December 2020. Low (&lt; 3 LNs+) and high (≥ 3 LNs+) pathological ALN (pALN) burden were recorded as endpoint. Breast edema score (BES) was evaluated at T2WI. Univariable and multivariable analyses were performed by the logistic regression model. The added predictive value of BES was examined utilizing the area under the curve (AUC), net reclassification improvement (NRI), and integrated discrimination improvement (IDI). Results A total of 1092 patients were included in this study. BES was identified as the independent predictor of pALN burden in primary ( n = 677) and validation ( n = 415) cohorts. The analysis using MRI-ALN status showed that BES significantly improved the predictive performance of pALN burden (AUC: 0.65 vs 0.71, p &lt; 0.001; IDI = 0.045, p &lt; 0.001; continuous NRI = 0.159, p = 0.050). These results were confirmed in the validation cohort (AUC: 0.64 vs 0.69, p = 0.009; IDI = 0.050, p &lt; 0.001; continuous NRI = 0.213, p = 0.047). Furthermore, BES was positively correlated with biologically invasive clinicopathological factors ( p &lt; 0.05). Conclusions In individuals with early-stage breast cancer, preoperative MRI characteristics of breast edema could be a promising predictor for pALN burden, which may aid in treatment planning. Key Points • In this retrospective study of 1092 patients with early-stage breast cancer from two cohorts, the MRI characteristic of breast edema has independent and additive predictive value for assessing axillary lymph node burden . • Breast edema characteristics at T2WI positively correlated with biologically invasive clinicopathological factors, which may be useful for preoperative diagnosis and treatment planning for individual patients with breast cancer.</description><subject>Axilla - pathology</subject><subject>Breast</subject><subject>Breast cancer</subject><subject>Breast Diseases - pathology</subject><subject>Breast Neoplasms - complications</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - pathology</subject><subject>Diagnostic Radiology</subject><subject>Edema</subject><subject>Edema - diagnostic imaging</subject><subject>Edema - pathology</subject><subject>Female</subject><subject>Humans</subject><subject>Imaging</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Invasiveness</subject><subject>Lymph nodes</subject><subject>Lymph Nodes - diagnostic imaging</subject><subject>Lymph Nodes - pathology</subject><subject>Lymphatic Metastasis - pathology</subject><subject>Lymphatic system</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neuroradiology</subject><subject>Patients</subject><subject>Performance prediction</subject><subject>Radiology</subject><subject>Reclassification</subject><subject>Regression models</subject><subject>Retrospective Studies</subject><subject>Ultrasound</subject><issn>1432-1084</issn><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kctuFDEQRS0EIiHwAyyQJTZsGsqPbrfZoYhApCAkBGvLY1dPHPVjcLkRk0_gq2OYBBALVrZUp66rfBh7KuClADCvCEApaEDKBvreds31PXYstJKNgF7f_-t-xB4RXQGAFdo8ZEeqNaCFkMfsx4dP5zxc-uxDwZyopEB8Gfgmo6fCMeLk-bBk7omQKM1b7r-ncfR5z8f9tLvk8xKRb9YcceZp5ujzuG-o-C3ehQQ_B8yvuecZS15oh6Gkb7WcAs4lp8CprHH_mD0Y_Ej45PY8YV_O3n4-fd9cfHx3fvrmoglai9LELkLrY9cNg2wjYB98Dx6kFUPoVBe8NrIdLII2SnTK2La1wlbMohIBUJ2wF4fcXV6-rkjFTYkC1p1mXFZysjOdlbK1pqLP_0GvljXPdTonjQajlZa2UvJAhbocZRzcLqep_pAT4H6acgdTrppyv0y569r07DZ63UwYf7fcqamAOgBUS_MW85-3_xN7A5CeoIg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Xu, Zeyan</creator><creator>Ding, Yingying</creator><creator>Zhao, Ke</creator><creator>Han, Chu</creator><creator>Shi, Zhenwei</creator><creator>Cui, Yanfen</creator><creator>Liu, Chunling</creator><creator>Lin, Huan</creator><creator>Pan, Xipeng</creator><creator>Li, Pinxiong</creator><creator>Chen, Minglei</creator><creator>Wang, Huihui</creator><creator>Deng, Xiaohui</creator><creator>Liang, Changhong</creator><creator>Xie, Yu</creator><creator>Liu, Zaiyi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3296-9759</orcidid></search><sort><creationdate>20221201</creationdate><title>MRI characteristics of breast edema for assessing axillary lymph node burden in early-stage breast cancer: a retrospective bicentric study</title><author>Xu, Zeyan ; Ding, Yingying ; Zhao, Ke ; Han, Chu ; Shi, Zhenwei ; Cui, Yanfen ; Liu, Chunling ; Lin, Huan ; Pan, Xipeng ; Li, Pinxiong ; Chen, Minglei ; Wang, Huihui ; Deng, Xiaohui ; Liang, Changhong ; Xie, Yu ; Liu, Zaiyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-d6d05ad66ff25d0e8ca80a0291fc636ca4725f9e04731637955919e8c9e31c0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Axilla - pathology</topic><topic>Breast</topic><topic>Breast cancer</topic><topic>Breast Diseases - pathology</topic><topic>Breast Neoplasms - complications</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - pathology</topic><topic>Diagnostic Radiology</topic><topic>Edema</topic><topic>Edema - diagnostic imaging</topic><topic>Edema - pathology</topic><topic>Female</topic><topic>Humans</topic><topic>Imaging</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Invasiveness</topic><topic>Lymph nodes</topic><topic>Lymph Nodes - diagnostic imaging</topic><topic>Lymph Nodes - pathology</topic><topic>Lymphatic Metastasis - pathology</topic><topic>Lymphatic system</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neuroradiology</topic><topic>Patients</topic><topic>Performance prediction</topic><topic>Radiology</topic><topic>Reclassification</topic><topic>Regression models</topic><topic>Retrospective Studies</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Zeyan</creatorcontrib><creatorcontrib>Ding, Yingying</creatorcontrib><creatorcontrib>Zhao, Ke</creatorcontrib><creatorcontrib>Han, Chu</creatorcontrib><creatorcontrib>Shi, Zhenwei</creatorcontrib><creatorcontrib>Cui, Yanfen</creatorcontrib><creatorcontrib>Liu, Chunling</creatorcontrib><creatorcontrib>Lin, Huan</creatorcontrib><creatorcontrib>Pan, Xipeng</creatorcontrib><creatorcontrib>Li, Pinxiong</creatorcontrib><creatorcontrib>Chen, Minglei</creatorcontrib><creatorcontrib>Wang, Huihui</creatorcontrib><creatorcontrib>Deng, Xiaohui</creatorcontrib><creatorcontrib>Liang, Changhong</creatorcontrib><creatorcontrib>Xie, Yu</creatorcontrib><creatorcontrib>Liu, Zaiyi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Zeyan</au><au>Ding, Yingying</au><au>Zhao, Ke</au><au>Han, Chu</au><au>Shi, Zhenwei</au><au>Cui, Yanfen</au><au>Liu, Chunling</au><au>Lin, Huan</au><au>Pan, Xipeng</au><au>Li, Pinxiong</au><au>Chen, Minglei</au><au>Wang, Huihui</au><au>Deng, Xiaohui</au><au>Liang, Changhong</au><au>Xie, Yu</au><au>Liu, Zaiyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRI characteristics of breast edema for assessing axillary lymph node burden in early-stage breast cancer: a retrospective bicentric study</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>32</volume><issue>12</issue><spage>8213</spage><epage>8225</epage><pages>8213-8225</pages><issn>1432-1084</issn><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objectives To investigate whether breast edema characteristics at preoperative T2-weighted imaging (T2WI) could help evaluate axillary lymph node (ALN) burden in patients with early-stage breast cancer. Methods This retrospective study included women with clinical T1 and T2 stage breast cancer and preoperative MRI examination in two independent cohorts from May 2014 to December 2020. Low (&lt; 3 LNs+) and high (≥ 3 LNs+) pathological ALN (pALN) burden were recorded as endpoint. Breast edema score (BES) was evaluated at T2WI. Univariable and multivariable analyses were performed by the logistic regression model. The added predictive value of BES was examined utilizing the area under the curve (AUC), net reclassification improvement (NRI), and integrated discrimination improvement (IDI). Results A total of 1092 patients were included in this study. BES was identified as the independent predictor of pALN burden in primary ( n = 677) and validation ( n = 415) cohorts. The analysis using MRI-ALN status showed that BES significantly improved the predictive performance of pALN burden (AUC: 0.65 vs 0.71, p &lt; 0.001; IDI = 0.045, p &lt; 0.001; continuous NRI = 0.159, p = 0.050). These results were confirmed in the validation cohort (AUC: 0.64 vs 0.69, p = 0.009; IDI = 0.050, p &lt; 0.001; continuous NRI = 0.213, p = 0.047). Furthermore, BES was positively correlated with biologically invasive clinicopathological factors ( p &lt; 0.05). Conclusions In individuals with early-stage breast cancer, preoperative MRI characteristics of breast edema could be a promising predictor for pALN burden, which may aid in treatment planning. Key Points • In this retrospective study of 1092 patients with early-stage breast cancer from two cohorts, the MRI characteristic of breast edema has independent and additive predictive value for assessing axillary lymph node burden . • Breast edema characteristics at T2WI positively correlated with biologically invasive clinicopathological factors, which may be useful for preoperative diagnosis and treatment planning for individual patients with breast cancer.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35704112</pmid><doi>10.1007/s00330-022-08896-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3296-9759</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-1084
ispartof European radiology, 2022-12, Vol.32 (12), p.8213-8225
issn 1432-1084
0938-7994
1432-1084
language eng
recordid cdi_proquest_miscellaneous_2676922597
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Axilla - pathology
Breast
Breast cancer
Breast Diseases - pathology
Breast Neoplasms - complications
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - pathology
Diagnostic Radiology
Edema
Edema - diagnostic imaging
Edema - pathology
Female
Humans
Imaging
Internal Medicine
Interventional Radiology
Invasiveness
Lymph nodes
Lymph Nodes - diagnostic imaging
Lymph Nodes - pathology
Lymphatic Metastasis - pathology
Lymphatic system
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medicine
Medicine & Public Health
Neuroradiology
Patients
Performance prediction
Radiology
Reclassification
Regression models
Retrospective Studies
Ultrasound
title MRI characteristics of breast edema for assessing axillary lymph node burden in early-stage breast cancer: a retrospective bicentric study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRI%20characteristics%20of%20breast%20edema%20for%20assessing%20axillary%20lymph%20node%20burden%20in%20early-stage%20breast%20cancer:%20a%20retrospective%20bicentric%20study&rft.jtitle=European%20radiology&rft.au=Xu,%20Zeyan&rft.date=2022-12-01&rft.volume=32&rft.issue=12&rft.spage=8213&rft.epage=8225&rft.pages=8213-8225&rft.issn=1432-1084&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-022-08896-z&rft_dat=%3Cproquest_cross%3E2740743429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2740743429&rft_id=info:pmid/35704112&rfr_iscdi=true