Solar desalination with a humidification-dehumidification cycle: performance of the unit

The closed air cycle humidification-dehumidification process was used for water desalination using solar energy. The circulated air by natural or forced convection was heated and humidified by the hot water obtained either from a flat plate solar collector or from an electrical heater. The latent he...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Desalination 1998-12, Vol.120 (3), p.273-280
Hauptverfasser: Al-Hallaj, Said, Farid, Mohammed Mehdi, Rahman Tamimi, Abdul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue 3
container_start_page 273
container_title Desalination
container_volume 120
creator Al-Hallaj, Said
Farid, Mohammed Mehdi
Rahman Tamimi, Abdul
description The closed air cycle humidification-dehumidification process was used for water desalination using solar energy. The circulated air by natural or forced convection was heated and humidified by the hot water obtained either from a flat plate solar collector or from an electrical heater. The latent heat of condensation was recovered in the condenser to preheat the saline feed water. Two units of different sizes were constructed from different materials. The productivity of these units was found to be much higher than those of the single-basin stills. Moreover, these units were capable of producing a large quantity of saline warm water for domestic uses other than drinking. No significant improvement in the performance of the desalination units was achieved using forced air circulation at high temperatures. While at lower temperatures, a larger effect was noticed. This can be related to the low heat and mass transfer coefficients at low temperatures and to the non-linear increase in the water vapor pressure with temperature.
doi_str_mv 10.1016/S0011-9164(98)00224-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26768808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011916498002240</els_id><sourcerecordid>308224531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-60a5d75413e6758a71772ae6ad90e59c61eefab994824d68aba30b9f16c909073</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWKt_gpCDiB5Wk91sNvEiUvyCgocqeAvT7CyN7EdNdpX-9263RfHU0zCP9-YNP0JOObvijMvrGWOcR5pLcaHVJWNxLCK2R0ZcZUkkhBT7ZPRrOSRHIXz0a6yTZETeZ00JnuYYoHQ1tK6p6bdrFxTooqtc7gpnBzXK8b9A7cqWeEOX6IvGV1BbpE1B2wXSrnbtMTkooAx4sp1j8vZw_zp5iqYvj8-Tu2lkhWBtJBmkeZYKnqDMUgUZz7IYUEKuGabaSo5YwFxroWKRSwVzSNhcF1xazTTLkjE539xd-uazw9CaygWLZQk1Nl0wscykUkztNHLJY7mmMibpxmh9E4LHwiy9q8CvDGdmDdwMwM2aptHKDMAN63Nn2wIIFsrC90hc-AvLWCXDw7cbG_ZUvhx6E6zDnl7uPNrW5I3bUfQDg9iUww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16126129</pqid></control><display><type>article</type><title>Solar desalination with a humidification-dehumidification cycle: performance of the unit</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Al-Hallaj, Said ; Farid, Mohammed Mehdi ; Rahman Tamimi, Abdul</creator><creatorcontrib>Al-Hallaj, Said ; Farid, Mohammed Mehdi ; Rahman Tamimi, Abdul</creatorcontrib><description>The closed air cycle humidification-dehumidification process was used for water desalination using solar energy. The circulated air by natural or forced convection was heated and humidified by the hot water obtained either from a flat plate solar collector or from an electrical heater. The latent heat of condensation was recovered in the condenser to preheat the saline feed water. Two units of different sizes were constructed from different materials. The productivity of these units was found to be much higher than those of the single-basin stills. Moreover, these units were capable of producing a large quantity of saline warm water for domestic uses other than drinking. No significant improvement in the performance of the desalination units was achieved using forced air circulation at high temperatures. While at lower temperatures, a larger effect was noticed. This can be related to the low heat and mass transfer coefficients at low temperatures and to the non-linear increase in the water vapor pressure with temperature.</description><identifier>ISSN: 0011-9164</identifier><identifier>EISSN: 1873-4464</identifier><identifier>DOI: 10.1016/S0011-9164(98)00224-0</identifier><identifier>CODEN: DSLNAH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Air heaters ; Applied sciences ; Capacitors ; Circulation ; Condensates ; Construction materials ; Convection heating ; Desalination ; Drinking water ; Drinking water and swimming-pool water. Desalination ; Energy ; Energy. Thermal use of fuels ; Equipments, installations and applications ; Exact sciences and technology ; Heating equipment ; High temperature ; Hot water ; Humidification-dehumidification cycle ; Installations for energy generation and conversion: thermal and electrical energy ; Latent heat ; Low temperature ; Mass transfer ; Natural energy ; Nonlinearity ; Other installations: mhd power plants, fuel cell plants, incineration plants, etc ; Pollution ; Productivity ; Solar collectors ; Solar desalination ; Solar energy ; Solar thermal conversion ; Water treatment and pollution ; Water vapor</subject><ispartof>Desalination, 1998-12, Vol.120 (3), p.273-280</ispartof><rights>1998</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-60a5d75413e6758a71772ae6ad90e59c61eefab994824d68aba30b9f16c909073</citedby><cites>FETCH-LOGICAL-c440t-60a5d75413e6758a71772ae6ad90e59c61eefab994824d68aba30b9f16c909073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0011-9164(98)00224-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1628307$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Hallaj, Said</creatorcontrib><creatorcontrib>Farid, Mohammed Mehdi</creatorcontrib><creatorcontrib>Rahman Tamimi, Abdul</creatorcontrib><title>Solar desalination with a humidification-dehumidification cycle: performance of the unit</title><title>Desalination</title><description>The closed air cycle humidification-dehumidification process was used for water desalination using solar energy. The circulated air by natural or forced convection was heated and humidified by the hot water obtained either from a flat plate solar collector or from an electrical heater. The latent heat of condensation was recovered in the condenser to preheat the saline feed water. Two units of different sizes were constructed from different materials. The productivity of these units was found to be much higher than those of the single-basin stills. Moreover, these units were capable of producing a large quantity of saline warm water for domestic uses other than drinking. No significant improvement in the performance of the desalination units was achieved using forced air circulation at high temperatures. While at lower temperatures, a larger effect was noticed. This can be related to the low heat and mass transfer coefficients at low temperatures and to the non-linear increase in the water vapor pressure with temperature.</description><subject>Air heaters</subject><subject>Applied sciences</subject><subject>Capacitors</subject><subject>Circulation</subject><subject>Condensates</subject><subject>Construction materials</subject><subject>Convection heating</subject><subject>Desalination</subject><subject>Drinking water</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>Heating equipment</subject><subject>High temperature</subject><subject>Hot water</subject><subject>Humidification-dehumidification cycle</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Latent heat</subject><subject>Low temperature</subject><subject>Mass transfer</subject><subject>Natural energy</subject><subject>Nonlinearity</subject><subject>Other installations: mhd power plants, fuel cell plants, incineration plants, etc</subject><subject>Pollution</subject><subject>Productivity</subject><subject>Solar collectors</subject><subject>Solar desalination</subject><subject>Solar energy</subject><subject>Solar thermal conversion</subject><subject>Water treatment and pollution</subject><subject>Water vapor</subject><issn>0011-9164</issn><issn>1873-4464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWKt_gpCDiB5Wk91sNvEiUvyCgocqeAvT7CyN7EdNdpX-9263RfHU0zCP9-YNP0JOObvijMvrGWOcR5pLcaHVJWNxLCK2R0ZcZUkkhBT7ZPRrOSRHIXz0a6yTZETeZ00JnuYYoHQ1tK6p6bdrFxTooqtc7gpnBzXK8b9A7cqWeEOX6IvGV1BbpE1B2wXSrnbtMTkooAx4sp1j8vZw_zp5iqYvj8-Tu2lkhWBtJBmkeZYKnqDMUgUZz7IYUEKuGabaSo5YwFxroWKRSwVzSNhcF1xazTTLkjE539xd-uazw9CaygWLZQk1Nl0wscykUkztNHLJY7mmMibpxmh9E4LHwiy9q8CvDGdmDdwMwM2aptHKDMAN63Nn2wIIFsrC90hc-AvLWCXDw7cbG_ZUvhx6E6zDnl7uPNrW5I3bUfQDg9iUww</recordid><startdate>19981222</startdate><enddate>19981222</enddate><creator>Al-Hallaj, Said</creator><creator>Farid, Mohammed Mehdi</creator><creator>Rahman Tamimi, Abdul</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>19981222</creationdate><title>Solar desalination with a humidification-dehumidification cycle: performance of the unit</title><author>Al-Hallaj, Said ; Farid, Mohammed Mehdi ; Rahman Tamimi, Abdul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-60a5d75413e6758a71772ae6ad90e59c61eefab994824d68aba30b9f16c909073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Air heaters</topic><topic>Applied sciences</topic><topic>Capacitors</topic><topic>Circulation</topic><topic>Condensates</topic><topic>Construction materials</topic><topic>Convection heating</topic><topic>Desalination</topic><topic>Drinking water</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>Heating equipment</topic><topic>High temperature</topic><topic>Hot water</topic><topic>Humidification-dehumidification cycle</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Latent heat</topic><topic>Low temperature</topic><topic>Mass transfer</topic><topic>Natural energy</topic><topic>Nonlinearity</topic><topic>Other installations: mhd power plants, fuel cell plants, incineration plants, etc</topic><topic>Pollution</topic><topic>Productivity</topic><topic>Solar collectors</topic><topic>Solar desalination</topic><topic>Solar energy</topic><topic>Solar thermal conversion</topic><topic>Water treatment and pollution</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Hallaj, Said</creatorcontrib><creatorcontrib>Farid, Mohammed Mehdi</creatorcontrib><creatorcontrib>Rahman Tamimi, Abdul</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Desalination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Hallaj, Said</au><au>Farid, Mohammed Mehdi</au><au>Rahman Tamimi, Abdul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar desalination with a humidification-dehumidification cycle: performance of the unit</atitle><jtitle>Desalination</jtitle><date>1998-12-22</date><risdate>1998</risdate><volume>120</volume><issue>3</issue><spage>273</spage><epage>280</epage><pages>273-280</pages><issn>0011-9164</issn><eissn>1873-4464</eissn><coden>DSLNAH</coden><abstract>The closed air cycle humidification-dehumidification process was used for water desalination using solar energy. The circulated air by natural or forced convection was heated and humidified by the hot water obtained either from a flat plate solar collector or from an electrical heater. The latent heat of condensation was recovered in the condenser to preheat the saline feed water. Two units of different sizes were constructed from different materials. The productivity of these units was found to be much higher than those of the single-basin stills. Moreover, these units were capable of producing a large quantity of saline warm water for domestic uses other than drinking. No significant improvement in the performance of the desalination units was achieved using forced air circulation at high temperatures. While at lower temperatures, a larger effect was noticed. This can be related to the low heat and mass transfer coefficients at low temperatures and to the non-linear increase in the water vapor pressure with temperature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0011-9164(98)00224-0</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-9164
ispartof Desalination, 1998-12, Vol.120 (3), p.273-280
issn 0011-9164
1873-4464
language eng
recordid cdi_proquest_miscellaneous_26768808
source ScienceDirect Journals (5 years ago - present)
subjects Air heaters
Applied sciences
Capacitors
Circulation
Condensates
Construction materials
Convection heating
Desalination
Drinking water
Drinking water and swimming-pool water. Desalination
Energy
Energy. Thermal use of fuels
Equipments, installations and applications
Exact sciences and technology
Heating equipment
High temperature
Hot water
Humidification-dehumidification cycle
Installations for energy generation and conversion: thermal and electrical energy
Latent heat
Low temperature
Mass transfer
Natural energy
Nonlinearity
Other installations: mhd power plants, fuel cell plants, incineration plants, etc
Pollution
Productivity
Solar collectors
Solar desalination
Solar energy
Solar thermal conversion
Water treatment and pollution
Water vapor
title Solar desalination with a humidification-dehumidification cycle: performance of the unit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20desalination%20with%20a%20humidification-dehumidification%20cycle:%20performance%20of%20the%20unit&rft.jtitle=Desalination&rft.au=Al-Hallaj,%20Said&rft.date=1998-12-22&rft.volume=120&rft.issue=3&rft.spage=273&rft.epage=280&rft.pages=273-280&rft.issn=0011-9164&rft.eissn=1873-4464&rft.coden=DSLNAH&rft_id=info:doi/10.1016/S0011-9164(98)00224-0&rft_dat=%3Cproquest_cross%3E308224531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16126129&rft_id=info:pmid/&rft_els_id=S0011916498002240&rfr_iscdi=true