Solar desalination with a humidification-dehumidification cycle: performance of the unit
The closed air cycle humidification-dehumidification process was used for water desalination using solar energy. The circulated air by natural or forced convection was heated and humidified by the hot water obtained either from a flat plate solar collector or from an electrical heater. The latent he...
Gespeichert in:
Veröffentlicht in: | Desalination 1998-12, Vol.120 (3), p.273-280 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 280 |
---|---|
container_issue | 3 |
container_start_page | 273 |
container_title | Desalination |
container_volume | 120 |
creator | Al-Hallaj, Said Farid, Mohammed Mehdi Rahman Tamimi, Abdul |
description | The closed air cycle humidification-dehumidification process was used for water desalination using solar energy. The circulated air by natural or forced convection was heated and humidified by the hot water obtained either from a flat plate solar collector or from an electrical heater. The latent heat of condensation was recovered in the condenser to preheat the saline feed water. Two units of different sizes were constructed from different materials. The productivity of these units was found to be much higher than those of the single-basin stills. Moreover, these units were capable of producing a large quantity of saline warm water for domestic uses other than drinking. No significant improvement in the performance of the desalination units was achieved using forced air circulation at high temperatures. While at lower temperatures, a larger effect was noticed. This can be related to the low heat and mass transfer coefficients at low temperatures and to the non-linear increase in the water vapor pressure with temperature. |
doi_str_mv | 10.1016/S0011-9164(98)00224-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26768808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011916498002240</els_id><sourcerecordid>308224531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-60a5d75413e6758a71772ae6ad90e59c61eefab994824d68aba30b9f16c909073</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWKt_gpCDiB5Wk91sNvEiUvyCgocqeAvT7CyN7EdNdpX-9263RfHU0zCP9-YNP0JOObvijMvrGWOcR5pLcaHVJWNxLCK2R0ZcZUkkhBT7ZPRrOSRHIXz0a6yTZETeZ00JnuYYoHQ1tK6p6bdrFxTooqtc7gpnBzXK8b9A7cqWeEOX6IvGV1BbpE1B2wXSrnbtMTkooAx4sp1j8vZw_zp5iqYvj8-Tu2lkhWBtJBmkeZYKnqDMUgUZz7IYUEKuGabaSo5YwFxroWKRSwVzSNhcF1xazTTLkjE539xd-uazw9CaygWLZQk1Nl0wscykUkztNHLJY7mmMibpxmh9E4LHwiy9q8CvDGdmDdwMwM2aptHKDMAN63Nn2wIIFsrC90hc-AvLWCXDw7cbG_ZUvhx6E6zDnl7uPNrW5I3bUfQDg9iUww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16126129</pqid></control><display><type>article</type><title>Solar desalination with a humidification-dehumidification cycle: performance of the unit</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Al-Hallaj, Said ; Farid, Mohammed Mehdi ; Rahman Tamimi, Abdul</creator><creatorcontrib>Al-Hallaj, Said ; Farid, Mohammed Mehdi ; Rahman Tamimi, Abdul</creatorcontrib><description>The closed air cycle humidification-dehumidification process was used for water desalination using solar energy. The circulated air by natural or forced convection was heated and humidified by the hot water obtained either from a flat plate solar collector or from an electrical heater. The latent heat of condensation was recovered in the condenser to preheat the saline feed water. Two units of different sizes were constructed from different materials. The productivity of these units was found to be much higher than those of the single-basin stills. Moreover, these units were capable of producing a large quantity of saline warm water for domestic uses other than drinking. No significant improvement in the performance of the desalination units was achieved using forced air circulation at high temperatures. While at lower temperatures, a larger effect was noticed. This can be related to the low heat and mass transfer coefficients at low temperatures and to the non-linear increase in the water vapor pressure with temperature.</description><identifier>ISSN: 0011-9164</identifier><identifier>EISSN: 1873-4464</identifier><identifier>DOI: 10.1016/S0011-9164(98)00224-0</identifier><identifier>CODEN: DSLNAH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Air heaters ; Applied sciences ; Capacitors ; Circulation ; Condensates ; Construction materials ; Convection heating ; Desalination ; Drinking water ; Drinking water and swimming-pool water. Desalination ; Energy ; Energy. Thermal use of fuels ; Equipments, installations and applications ; Exact sciences and technology ; Heating equipment ; High temperature ; Hot water ; Humidification-dehumidification cycle ; Installations for energy generation and conversion: thermal and electrical energy ; Latent heat ; Low temperature ; Mass transfer ; Natural energy ; Nonlinearity ; Other installations: mhd power plants, fuel cell plants, incineration plants, etc ; Pollution ; Productivity ; Solar collectors ; Solar desalination ; Solar energy ; Solar thermal conversion ; Water treatment and pollution ; Water vapor</subject><ispartof>Desalination, 1998-12, Vol.120 (3), p.273-280</ispartof><rights>1998</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-60a5d75413e6758a71772ae6ad90e59c61eefab994824d68aba30b9f16c909073</citedby><cites>FETCH-LOGICAL-c440t-60a5d75413e6758a71772ae6ad90e59c61eefab994824d68aba30b9f16c909073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0011-9164(98)00224-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1628307$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Al-Hallaj, Said</creatorcontrib><creatorcontrib>Farid, Mohammed Mehdi</creatorcontrib><creatorcontrib>Rahman Tamimi, Abdul</creatorcontrib><title>Solar desalination with a humidification-dehumidification cycle: performance of the unit</title><title>Desalination</title><description>The closed air cycle humidification-dehumidification process was used for water desalination using solar energy. The circulated air by natural or forced convection was heated and humidified by the hot water obtained either from a flat plate solar collector or from an electrical heater. The latent heat of condensation was recovered in the condenser to preheat the saline feed water. Two units of different sizes were constructed from different materials. The productivity of these units was found to be much higher than those of the single-basin stills. Moreover, these units were capable of producing a large quantity of saline warm water for domestic uses other than drinking. No significant improvement in the performance of the desalination units was achieved using forced air circulation at high temperatures. While at lower temperatures, a larger effect was noticed. This can be related to the low heat and mass transfer coefficients at low temperatures and to the non-linear increase in the water vapor pressure with temperature.</description><subject>Air heaters</subject><subject>Applied sciences</subject><subject>Capacitors</subject><subject>Circulation</subject><subject>Condensates</subject><subject>Construction materials</subject><subject>Convection heating</subject><subject>Desalination</subject><subject>Drinking water</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments, installations and applications</subject><subject>Exact sciences and technology</subject><subject>Heating equipment</subject><subject>High temperature</subject><subject>Hot water</subject><subject>Humidification-dehumidification cycle</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Latent heat</subject><subject>Low temperature</subject><subject>Mass transfer</subject><subject>Natural energy</subject><subject>Nonlinearity</subject><subject>Other installations: mhd power plants, fuel cell plants, incineration plants, etc</subject><subject>Pollution</subject><subject>Productivity</subject><subject>Solar collectors</subject><subject>Solar desalination</subject><subject>Solar energy</subject><subject>Solar thermal conversion</subject><subject>Water treatment and pollution</subject><subject>Water vapor</subject><issn>0011-9164</issn><issn>1873-4464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWKt_gpCDiB5Wk91sNvEiUvyCgocqeAvT7CyN7EdNdpX-9263RfHU0zCP9-YNP0JOObvijMvrGWOcR5pLcaHVJWNxLCK2R0ZcZUkkhBT7ZPRrOSRHIXz0a6yTZETeZ00JnuYYoHQ1tK6p6bdrFxTooqtc7gpnBzXK8b9A7cqWeEOX6IvGV1BbpE1B2wXSrnbtMTkooAx4sp1j8vZw_zp5iqYvj8-Tu2lkhWBtJBmkeZYKnqDMUgUZz7IYUEKuGabaSo5YwFxroWKRSwVzSNhcF1xazTTLkjE539xd-uazw9CaygWLZQk1Nl0wscykUkztNHLJY7mmMibpxmh9E4LHwiy9q8CvDGdmDdwMwM2aptHKDMAN63Nn2wIIFsrC90hc-AvLWCXDw7cbG_ZUvhx6E6zDnl7uPNrW5I3bUfQDg9iUww</recordid><startdate>19981222</startdate><enddate>19981222</enddate><creator>Al-Hallaj, Said</creator><creator>Farid, Mohammed Mehdi</creator><creator>Rahman Tamimi, Abdul</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>19981222</creationdate><title>Solar desalination with a humidification-dehumidification cycle: performance of the unit</title><author>Al-Hallaj, Said ; Farid, Mohammed Mehdi ; Rahman Tamimi, Abdul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-60a5d75413e6758a71772ae6ad90e59c61eefab994824d68aba30b9f16c909073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Air heaters</topic><topic>Applied sciences</topic><topic>Capacitors</topic><topic>Circulation</topic><topic>Condensates</topic><topic>Construction materials</topic><topic>Convection heating</topic><topic>Desalination</topic><topic>Drinking water</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments, installations and applications</topic><topic>Exact sciences and technology</topic><topic>Heating equipment</topic><topic>High temperature</topic><topic>Hot water</topic><topic>Humidification-dehumidification cycle</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Latent heat</topic><topic>Low temperature</topic><topic>Mass transfer</topic><topic>Natural energy</topic><topic>Nonlinearity</topic><topic>Other installations: mhd power plants, fuel cell plants, incineration plants, etc</topic><topic>Pollution</topic><topic>Productivity</topic><topic>Solar collectors</topic><topic>Solar desalination</topic><topic>Solar energy</topic><topic>Solar thermal conversion</topic><topic>Water treatment and pollution</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al-Hallaj, Said</creatorcontrib><creatorcontrib>Farid, Mohammed Mehdi</creatorcontrib><creatorcontrib>Rahman Tamimi, Abdul</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Desalination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al-Hallaj, Said</au><au>Farid, Mohammed Mehdi</au><au>Rahman Tamimi, Abdul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar desalination with a humidification-dehumidification cycle: performance of the unit</atitle><jtitle>Desalination</jtitle><date>1998-12-22</date><risdate>1998</risdate><volume>120</volume><issue>3</issue><spage>273</spage><epage>280</epage><pages>273-280</pages><issn>0011-9164</issn><eissn>1873-4464</eissn><coden>DSLNAH</coden><abstract>The closed air cycle humidification-dehumidification process was used for water desalination using solar energy. The circulated air by natural or forced convection was heated and humidified by the hot water obtained either from a flat plate solar collector or from an electrical heater. The latent heat of condensation was recovered in the condenser to preheat the saline feed water. Two units of different sizes were constructed from different materials. The productivity of these units was found to be much higher than those of the single-basin stills. Moreover, these units were capable of producing a large quantity of saline warm water for domestic uses other than drinking. No significant improvement in the performance of the desalination units was achieved using forced air circulation at high temperatures. While at lower temperatures, a larger effect was noticed. This can be related to the low heat and mass transfer coefficients at low temperatures and to the non-linear increase in the water vapor pressure with temperature.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0011-9164(98)00224-0</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-9164 |
ispartof | Desalination, 1998-12, Vol.120 (3), p.273-280 |
issn | 0011-9164 1873-4464 |
language | eng |
recordid | cdi_proquest_miscellaneous_26768808 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Air heaters Applied sciences Capacitors Circulation Condensates Construction materials Convection heating Desalination Drinking water Drinking water and swimming-pool water. Desalination Energy Energy. Thermal use of fuels Equipments, installations and applications Exact sciences and technology Heating equipment High temperature Hot water Humidification-dehumidification cycle Installations for energy generation and conversion: thermal and electrical energy Latent heat Low temperature Mass transfer Natural energy Nonlinearity Other installations: mhd power plants, fuel cell plants, incineration plants, etc Pollution Productivity Solar collectors Solar desalination Solar energy Solar thermal conversion Water treatment and pollution Water vapor |
title | Solar desalination with a humidification-dehumidification cycle: performance of the unit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20desalination%20with%20a%20humidification-dehumidification%20cycle:%20performance%20of%20the%20unit&rft.jtitle=Desalination&rft.au=Al-Hallaj,%20Said&rft.date=1998-12-22&rft.volume=120&rft.issue=3&rft.spage=273&rft.epage=280&rft.pages=273-280&rft.issn=0011-9164&rft.eissn=1873-4464&rft.coden=DSLNAH&rft_id=info:doi/10.1016/S0011-9164(98)00224-0&rft_dat=%3Cproquest_cross%3E308224531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16126129&rft_id=info:pmid/&rft_els_id=S0011916498002240&rfr_iscdi=true |