High temperature heat exchangers and microscale combustion systems: applications to thermal system miniaturization

The objective of traditional research and development on heat exchangers (HEs) has been to improve the performance and/or reduce the size and cost of the HE. Traditional research in power conversion has focused primarily on efficiency issues. However, rapidly developing applications in high temperat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental thermal and fluid science 2001-11, Vol.25 (5), p.207-217
Hauptverfasser: Ohadi, Michael M., Buckley, Steven G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 217
container_issue 5
container_start_page 207
container_title Experimental thermal and fluid science
container_volume 25
creator Ohadi, Michael M.
Buckley, Steven G.
description The objective of traditional research and development on heat exchangers (HEs) has been to improve the performance and/or reduce the size and cost of the HE. Traditional research in power conversion has focused primarily on efficiency issues. However, rapidly developing applications in high temperature power and propulsion, pollution control/heat recovery, and high density power electronics has introduced new opportunities and challenges in developing cost-effective high performance, high temperature heat exchangers (HTHE) and microscale power systems. In this article the focus is placed on HTHEs for power/propulsion and thermal incineration/heat recovery applications, and on enabling technologies for microscale combustion systems. First a brief review of the growing need for HTHEs and microscale combustors and the state-of-the-art materials and fabrication technologies is presented. Next, various heat transfer augmentation techniques and their potential applicability to performance enhancement of HTHEs are discussed. Selected results of a case study involving a carbon fiber HE enhanced with an active heat transfer augmentation technique are presented. Issues associated with microscale combustion systems are presented, and technology enabling their development, namely, catalytic combustion and electrohydrodynamic (EHD) reaction rate augmentation techniques are discussed.
doi_str_mv 10.1016/S0894-1777(01)00069-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26766458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0894177701000693</els_id><sourcerecordid>26766458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-7af217e49fcafe879c23209dd836f6d9d96c14c865f459230705802cdad947f83</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVJoI7Tn1DQJaE9bCJptdKqlxJMPgqGHNKehSqNbJX9qqQtdX59dm2THHMaGJ53hvdB6DMlV5RQcf1EasULKqX8QuhXQohQRfkBLWgtVcFYLU7Q4hX5iM5S-jNBNaNkgeJD2GxxhnaAaPIYAW_BZAz_7dZ0G4gJm87hNtjYJ2sawLZvf48ph77DaZemYPqGzTA0wZp5mXDucd5CbE1zBKZ0F-bb4XmPnKNTb5oEn45ziX7d3f5cPRTrx_sfq5t1YTmpciGNZ1QCV94aD1MVy0pGlHN1KbxwyilhKbe1qDyvFCuJJFVNmHXGKS59XS7R5eHuEPu_I6Ss25AsNI3poB-TZkIKwasZrA7gXDJF8HqIoTVxpynRs2G9N6xnfZpQvTesyyl3cXxgZjc-ms6G9BbmRHDKZ-77gYOp7b8AUScboLPgQgSbtevDO59eAG7SkuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26766458</pqid></control><display><type>article</type><title>High temperature heat exchangers and microscale combustion systems: applications to thermal system miniaturization</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ohadi, Michael M. ; Buckley, Steven G.</creator><creatorcontrib>Ohadi, Michael M. ; Buckley, Steven G.</creatorcontrib><description>The objective of traditional research and development on heat exchangers (HEs) has been to improve the performance and/or reduce the size and cost of the HE. Traditional research in power conversion has focused primarily on efficiency issues. However, rapidly developing applications in high temperature power and propulsion, pollution control/heat recovery, and high density power electronics has introduced new opportunities and challenges in developing cost-effective high performance, high temperature heat exchangers (HTHE) and microscale power systems. In this article the focus is placed on HTHEs for power/propulsion and thermal incineration/heat recovery applications, and on enabling technologies for microscale combustion systems. First a brief review of the growing need for HTHEs and microscale combustors and the state-of-the-art materials and fabrication technologies is presented. Next, various heat transfer augmentation techniques and their potential applicability to performance enhancement of HTHEs are discussed. Selected results of a case study involving a carbon fiber HE enhanced with an active heat transfer augmentation technique are presented. Issues associated with microscale combustion systems are presented, and technology enabling their development, namely, catalytic combustion and electrohydrodynamic (EHD) reaction rate augmentation techniques are discussed.</description><identifier>ISSN: 0894-1777</identifier><identifier>EISSN: 1879-2286</identifier><identifier>DOI: 10.1016/S0894-1777(01)00069-3</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied sciences ; Devices using thermal energy ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Heat exchangers (included heat transformers, condensers, cooling towers)</subject><ispartof>Experimental thermal and fluid science, 2001-11, Vol.25 (5), p.207-217</ispartof><rights>2001 Elsevier Science Inc.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-7af217e49fcafe879c23209dd836f6d9d96c14c865f459230705802cdad947f83</citedby><cites>FETCH-LOGICAL-c405t-7af217e49fcafe879c23209dd836f6d9d96c14c865f459230705802cdad947f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0894-1777(01)00069-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14064143$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohadi, Michael M.</creatorcontrib><creatorcontrib>Buckley, Steven G.</creatorcontrib><title>High temperature heat exchangers and microscale combustion systems: applications to thermal system miniaturization</title><title>Experimental thermal and fluid science</title><description>The objective of traditional research and development on heat exchangers (HEs) has been to improve the performance and/or reduce the size and cost of the HE. Traditional research in power conversion has focused primarily on efficiency issues. However, rapidly developing applications in high temperature power and propulsion, pollution control/heat recovery, and high density power electronics has introduced new opportunities and challenges in developing cost-effective high performance, high temperature heat exchangers (HTHE) and microscale power systems. In this article the focus is placed on HTHEs for power/propulsion and thermal incineration/heat recovery applications, and on enabling technologies for microscale combustion systems. First a brief review of the growing need for HTHEs and microscale combustors and the state-of-the-art materials and fabrication technologies is presented. Next, various heat transfer augmentation techniques and their potential applicability to performance enhancement of HTHEs are discussed. Selected results of a case study involving a carbon fiber HE enhanced with an active heat transfer augmentation technique are presented. Issues associated with microscale combustion systems are presented, and technology enabling their development, namely, catalytic combustion and electrohydrodynamic (EHD) reaction rate augmentation techniques are discussed.</description><subject>Applied sciences</subject><subject>Devices using thermal energy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Heat exchangers (included heat transformers, condensers, cooling towers)</subject><issn>0894-1777</issn><issn>1879-2286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVJoI7Tn1DQJaE9bCJptdKqlxJMPgqGHNKehSqNbJX9qqQtdX59dm2THHMaGJ53hvdB6DMlV5RQcf1EasULKqX8QuhXQohQRfkBLWgtVcFYLU7Q4hX5iM5S-jNBNaNkgeJD2GxxhnaAaPIYAW_BZAz_7dZ0G4gJm87hNtjYJ2sawLZvf48ph77DaZemYPqGzTA0wZp5mXDucd5CbE1zBKZ0F-bb4XmPnKNTb5oEn45ziX7d3f5cPRTrx_sfq5t1YTmpciGNZ1QCV94aD1MVy0pGlHN1KbxwyilhKbe1qDyvFCuJJFVNmHXGKS59XS7R5eHuEPu_I6Ss25AsNI3poB-TZkIKwasZrA7gXDJF8HqIoTVxpynRs2G9N6xnfZpQvTesyyl3cXxgZjc-ms6G9BbmRHDKZ-77gYOp7b8AUScboLPgQgSbtevDO59eAG7SkuA</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Ohadi, Michael M.</creator><creator>Buckley, Steven G.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20011101</creationdate><title>High temperature heat exchangers and microscale combustion systems: applications to thermal system miniaturization</title><author>Ohadi, Michael M. ; Buckley, Steven G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-7af217e49fcafe879c23209dd836f6d9d96c14c865f459230705802cdad947f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Devices using thermal energy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Heat exchangers (included heat transformers, condensers, cooling towers)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohadi, Michael M.</creatorcontrib><creatorcontrib>Buckley, Steven G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Experimental thermal and fluid science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohadi, Michael M.</au><au>Buckley, Steven G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High temperature heat exchangers and microscale combustion systems: applications to thermal system miniaturization</atitle><jtitle>Experimental thermal and fluid science</jtitle><date>2001-11-01</date><risdate>2001</risdate><volume>25</volume><issue>5</issue><spage>207</spage><epage>217</epage><pages>207-217</pages><issn>0894-1777</issn><eissn>1879-2286</eissn><abstract>The objective of traditional research and development on heat exchangers (HEs) has been to improve the performance and/or reduce the size and cost of the HE. Traditional research in power conversion has focused primarily on efficiency issues. However, rapidly developing applications in high temperature power and propulsion, pollution control/heat recovery, and high density power electronics has introduced new opportunities and challenges in developing cost-effective high performance, high temperature heat exchangers (HTHE) and microscale power systems. In this article the focus is placed on HTHEs for power/propulsion and thermal incineration/heat recovery applications, and on enabling technologies for microscale combustion systems. First a brief review of the growing need for HTHEs and microscale combustors and the state-of-the-art materials and fabrication technologies is presented. Next, various heat transfer augmentation techniques and their potential applicability to performance enhancement of HTHEs are discussed. Selected results of a case study involving a carbon fiber HE enhanced with an active heat transfer augmentation technique are presented. Issues associated with microscale combustion systems are presented, and technology enabling their development, namely, catalytic combustion and electrohydrodynamic (EHD) reaction rate augmentation techniques are discussed.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/S0894-1777(01)00069-3</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-1777
ispartof Experimental thermal and fluid science, 2001-11, Vol.25 (5), p.207-217
issn 0894-1777
1879-2286
language eng
recordid cdi_proquest_miscellaneous_26766458
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Devices using thermal energy
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Heat exchangers (included heat transformers, condensers, cooling towers)
title High temperature heat exchangers and microscale combustion systems: applications to thermal system miniaturization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20temperature%20heat%20exchangers%20and%20microscale%20combustion%20systems:%20applications%20to%20thermal%20system%20miniaturization&rft.jtitle=Experimental%20thermal%20and%20fluid%20science&rft.au=Ohadi,%20Michael%20M.&rft.date=2001-11-01&rft.volume=25&rft.issue=5&rft.spage=207&rft.epage=217&rft.pages=207-217&rft.issn=0894-1777&rft.eissn=1879-2286&rft_id=info:doi/10.1016/S0894-1777(01)00069-3&rft_dat=%3Cproquest_cross%3E26766458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26766458&rft_id=info:pmid/&rft_els_id=S0894177701000693&rfr_iscdi=true