Segmentation of Page Images Using the Area Voronoi Diagram

This paper presents a method of page segmentation based on the approximated area Voronoi diagram. The characteristics of the proposed method are as follows: (1) The Voronoi diagram enables us to obtain the candidates of boundaries of document components from page images with non-Manhattan layout and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer vision and image understanding 1998-06, Vol.70 (3), p.370-382
Hauptverfasser: Kise, Koichi, Sato, Akinori, Iwata, Motoi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 382
container_issue 3
container_start_page 370
container_title Computer vision and image understanding
container_volume 70
creator Kise, Koichi
Sato, Akinori
Iwata, Motoi
description This paper presents a method of page segmentation based on the approximated area Voronoi diagram. The characteristics of the proposed method are as follows: (1) The Voronoi diagram enables us to obtain the candidates of boundaries of document components from page images with non-Manhattan layout and a skew. (2) The candidates are utilized to estimate the intercharacter and interline gaps without the use of domain-specific parameters to select the boundaries. From the experimental results for 128 images with non-Manhattan layout and the skew of 0°∼45° as well as 98 images with Manhattan layout, we have confirmed that the method is effective for extraction of body text regions, and it is as efficient as other methods based on connected component analysis.
doi_str_mv 10.1006/cviu.1998.0684
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26766092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314298906841</els_id><sourcerecordid>26766092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-ee44ec6301910e85a2ce2f17e053b7b69eeb9a17199e1396c07ca2a87b7e2ddd3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqWwMntiS_HZqR2zVeWrEhJIUMRmOc4lGDVxsdNK_HsSlZXl7ob3Ob16CLkENgPG5LXb-90MtC5mTBb5EZkA0yzjYv5xPN5KZQJyfkrOUvpiDCDXMCE3r9i02PW296GjoaYvtkG6aoeZ6Dr5rqH9J9JFREvfQwxd8PTW2yba9pyc1HaT8OJvT8n6_u5t-Zg9PT-slounzIlC9BlinqOTgoEGhsXccoe8BoVsLkpVSo1YagtqaI4gtHRMOcttoUqFvKoqMSVXh7_bGL53mHrT-uRws7Edhl0yXCopmeZDcHYIuhhSilibbfStjT8GmBkVmVGRGRWZUdEAFAcAh_p7j9Ek57FzWPmIrjdV8P-hv3eBbN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26766092</pqid></control><display><type>article</type><title>Segmentation of Page Images Using the Area Voronoi Diagram</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kise, Koichi ; Sato, Akinori ; Iwata, Motoi</creator><creatorcontrib>Kise, Koichi ; Sato, Akinori ; Iwata, Motoi</creatorcontrib><description>This paper presents a method of page segmentation based on the approximated area Voronoi diagram. The characteristics of the proposed method are as follows: (1) The Voronoi diagram enables us to obtain the candidates of boundaries of document components from page images with non-Manhattan layout and a skew. (2) The candidates are utilized to estimate the intercharacter and interline gaps without the use of domain-specific parameters to select the boundaries. From the experimental results for 128 images with non-Manhattan layout and the skew of 0°∼45° as well as 98 images with Manhattan layout, we have confirmed that the method is effective for extraction of body text regions, and it is as efficient as other methods based on connected component analysis.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1006/cviu.1998.0684</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Computer vision and image understanding, 1998-06, Vol.70 (3), p.370-382</ispartof><rights>1998 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-ee44ec6301910e85a2ce2f17e053b7b69eeb9a17199e1396c07ca2a87b7e2ddd3</citedby><cites>FETCH-LOGICAL-c383t-ee44ec6301910e85a2ce2f17e053b7b69eeb9a17199e1396c07ca2a87b7e2ddd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1077314298906841$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Kise, Koichi</creatorcontrib><creatorcontrib>Sato, Akinori</creatorcontrib><creatorcontrib>Iwata, Motoi</creatorcontrib><title>Segmentation of Page Images Using the Area Voronoi Diagram</title><title>Computer vision and image understanding</title><description>This paper presents a method of page segmentation based on the approximated area Voronoi diagram. The characteristics of the proposed method are as follows: (1) The Voronoi diagram enables us to obtain the candidates of boundaries of document components from page images with non-Manhattan layout and a skew. (2) The candidates are utilized to estimate the intercharacter and interline gaps without the use of domain-specific parameters to select the boundaries. From the experimental results for 128 images with non-Manhattan layout and the skew of 0°∼45° as well as 98 images with Manhattan layout, we have confirmed that the method is effective for extraction of body text regions, and it is as efficient as other methods based on connected component analysis.</description><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqWwMntiS_HZqR2zVeWrEhJIUMRmOc4lGDVxsdNK_HsSlZXl7ob3Ob16CLkENgPG5LXb-90MtC5mTBb5EZkA0yzjYv5xPN5KZQJyfkrOUvpiDCDXMCE3r9i02PW296GjoaYvtkG6aoeZ6Dr5rqH9J9JFREvfQwxd8PTW2yba9pyc1HaT8OJvT8n6_u5t-Zg9PT-slounzIlC9BlinqOTgoEGhsXccoe8BoVsLkpVSo1YagtqaI4gtHRMOcttoUqFvKoqMSVXh7_bGL53mHrT-uRws7Edhl0yXCopmeZDcHYIuhhSilibbfStjT8GmBkVmVGRGRWZUdEAFAcAh_p7j9Ek57FzWPmIrjdV8P-hv3eBbN8</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Kise, Koichi</creator><creator>Sato, Akinori</creator><creator>Iwata, Motoi</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980601</creationdate><title>Segmentation of Page Images Using the Area Voronoi Diagram</title><author>Kise, Koichi ; Sato, Akinori ; Iwata, Motoi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-ee44ec6301910e85a2ce2f17e053b7b69eeb9a17199e1396c07ca2a87b7e2ddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kise, Koichi</creatorcontrib><creatorcontrib>Sato, Akinori</creatorcontrib><creatorcontrib>Iwata, Motoi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kise, Koichi</au><au>Sato, Akinori</au><au>Iwata, Motoi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of Page Images Using the Area Voronoi Diagram</atitle><jtitle>Computer vision and image understanding</jtitle><date>1998-06-01</date><risdate>1998</risdate><volume>70</volume><issue>3</issue><spage>370</spage><epage>382</epage><pages>370-382</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><abstract>This paper presents a method of page segmentation based on the approximated area Voronoi diagram. The characteristics of the proposed method are as follows: (1) The Voronoi diagram enables us to obtain the candidates of boundaries of document components from page images with non-Manhattan layout and a skew. (2) The candidates are utilized to estimate the intercharacter and interline gaps without the use of domain-specific parameters to select the boundaries. From the experimental results for 128 images with non-Manhattan layout and the skew of 0°∼45° as well as 98 images with Manhattan layout, we have confirmed that the method is effective for extraction of body text regions, and it is as efficient as other methods based on connected component analysis.</abstract><pub>Elsevier Inc</pub><doi>10.1006/cviu.1998.0684</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-3142
ispartof Computer vision and image understanding, 1998-06, Vol.70 (3), p.370-382
issn 1077-3142
1090-235X
language eng
recordid cdi_proquest_miscellaneous_26766092
source Elsevier ScienceDirect Journals Complete
title Segmentation of Page Images Using the Area Voronoi Diagram
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20Page%20Images%20Using%20the%20Area%20Voronoi%20Diagram&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Kise,%20Koichi&rft.date=1998-06-01&rft.volume=70&rft.issue=3&rft.spage=370&rft.epage=382&rft.pages=370-382&rft.issn=1077-3142&rft.eissn=1090-235X&rft_id=info:doi/10.1006/cviu.1998.0684&rft_dat=%3Cproquest_cross%3E26766092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26766092&rft_id=info:pmid/&rft_els_id=S1077314298906841&rfr_iscdi=true