3D printed controllable microporous scaffolds support embryonic development in vitro

Little is known about the complex molecular and cellular events occurring during implantation, which represents a critical step for pregnancy. The conventional 2D culture could not support postimplantation embryos' normal development, and 3D conditions shed light into the “black box”. 3D printi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2022-08, Vol.237 (8), p.3408-3420
Hauptverfasser: Guo, Jia, Li, Yuanyuan, Gao, Zili, Lyu, Jiawei, Liu, Wenli, Duan, Yongchao, Zhou, Lixun, Gu, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3420
container_issue 8
container_start_page 3408
container_title Journal of cellular physiology
container_volume 237
creator Guo, Jia
Li, Yuanyuan
Gao, Zili
Lyu, Jiawei
Liu, Wenli
Duan, Yongchao
Zhou, Lixun
Gu, Qi
description Little is known about the complex molecular and cellular events occurring during implantation, which represents a critical step for pregnancy. The conventional 2D culture could not support postimplantation embryos' normal development, and 3D conditions shed light into the “black box”. 3D printing technology has been widely used in recapitulating the structure and function of native tissues in vitro. Here, we 3D printed anisotropic microporous scaffolds to culture embryos by manipulating the advancing angle between printed layers, which affected embryo development. The 30° and 60° scaffolds promote embryo development with moderate embryo‐scaffold attachments. T‐positive cells and FOXA2‐positive cells were observed to appear in the posterior region of the embryo and migrated to the anterior region of the embryo on day 7. These findings demonstrate a 3D printed stand that supports embryonic development in vitro and the critical role of 3D architecture for embryo implantation, in which additive manufacturing is a versatile tool.
doi_str_mv 10.1002/jcp.30810
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2676555160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2701556251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3880-d9958c24c0dc7a7b01e294e1ed362e54ffff3652bd0d22348ac73370648e6eec3</originalsourceid><addsrcrecordid>eNp1kEFP3DAQhS1UBAvl0D9QReoFDmHHduzEx2oLlGolOMDZSuyJlFUSp3ZCtf--Q5f2UIm5eDT-9PTeY-wTh2sOINY7N11LqDgcsRUHU-aFVuIDW9Efz40q-Ck7S2kHAMZIecJOpdLG6KJasSf5LZtiN87oMxfGOYa-r5ses6FzMUwhhiVlydVtG3pP2zLRbc5waOI-jJ3LPL5gH6YBxznrxuylI4mP7Lit-4QXb-85e769edp8z7cPd_ebr9vcyaqC3BujKicKB96VddkAR2EK5OilFqiKlkZSksaDF0IWVe1KKUsg46gRnTxnlwfdKYafC6bZDl1ySAlGJN9W6FIrpbgGQr_8h-7CEkdyZ0UJXCktFCfq6kBR9pQitpa6Geq4txzsa9WWqrZ_qib285vi0gzo_5F_uyVgfQB-dT3u31eyPzaPB8nfuEaIWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2701556251</pqid></control><display><type>article</type><title>3D printed controllable microporous scaffolds support embryonic development in vitro</title><source>Access via Wiley Online Library</source><creator>Guo, Jia ; Li, Yuanyuan ; Gao, Zili ; Lyu, Jiawei ; Liu, Wenli ; Duan, Yongchao ; Zhou, Lixun ; Gu, Qi</creator><creatorcontrib>Guo, Jia ; Li, Yuanyuan ; Gao, Zili ; Lyu, Jiawei ; Liu, Wenli ; Duan, Yongchao ; Zhou, Lixun ; Gu, Qi</creatorcontrib><description>Little is known about the complex molecular and cellular events occurring during implantation, which represents a critical step for pregnancy. The conventional 2D culture could not support postimplantation embryos' normal development, and 3D conditions shed light into the “black box”. 3D printing technology has been widely used in recapitulating the structure and function of native tissues in vitro. Here, we 3D printed anisotropic microporous scaffolds to culture embryos by manipulating the advancing angle between printed layers, which affected embryo development. The 30° and 60° scaffolds promote embryo development with moderate embryo‐scaffold attachments. T‐positive cells and FOXA2‐positive cells were observed to appear in the posterior region of the embryo and migrated to the anterior region of the embryo on day 7. These findings demonstrate a 3D printed stand that supports embryonic development in vitro and the critical role of 3D architecture for embryo implantation, in which additive manufacturing is a versatile tool.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.30810</identifier><identifier>PMID: 35699648</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>3D printing ; anisotropic microporous scaffolds ; Cell culture ; embryo implantation ; Embryogenesis ; Embryonic growth stage ; Embryos ; Implantation ; in vitro culture ; Scaffolds ; Structure-function relationships ; Three dimensional printing</subject><ispartof>Journal of cellular physiology, 2022-08, Vol.237 (8), p.3408-3420</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022 The Authors. Journal of Cellular Physiology published by Wiley Periodicals LLC.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3880-d9958c24c0dc7a7b01e294e1ed362e54ffff3652bd0d22348ac73370648e6eec3</citedby><cites>FETCH-LOGICAL-c3880-d9958c24c0dc7a7b01e294e1ed362e54ffff3652bd0d22348ac73370648e6eec3</cites><orcidid>0000-0001-9387-9525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcp.30810$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcp.30810$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35699648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jia</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Gao, Zili</creatorcontrib><creatorcontrib>Lyu, Jiawei</creatorcontrib><creatorcontrib>Liu, Wenli</creatorcontrib><creatorcontrib>Duan, Yongchao</creatorcontrib><creatorcontrib>Zhou, Lixun</creatorcontrib><creatorcontrib>Gu, Qi</creatorcontrib><title>3D printed controllable microporous scaffolds support embryonic development in vitro</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Little is known about the complex molecular and cellular events occurring during implantation, which represents a critical step for pregnancy. The conventional 2D culture could not support postimplantation embryos' normal development, and 3D conditions shed light into the “black box”. 3D printing technology has been widely used in recapitulating the structure and function of native tissues in vitro. Here, we 3D printed anisotropic microporous scaffolds to culture embryos by manipulating the advancing angle between printed layers, which affected embryo development. The 30° and 60° scaffolds promote embryo development with moderate embryo‐scaffold attachments. T‐positive cells and FOXA2‐positive cells were observed to appear in the posterior region of the embryo and migrated to the anterior region of the embryo on day 7. These findings demonstrate a 3D printed stand that supports embryonic development in vitro and the critical role of 3D architecture for embryo implantation, in which additive manufacturing is a versatile tool.</description><subject>3D printing</subject><subject>anisotropic microporous scaffolds</subject><subject>Cell culture</subject><subject>embryo implantation</subject><subject>Embryogenesis</subject><subject>Embryonic growth stage</subject><subject>Embryos</subject><subject>Implantation</subject><subject>in vitro culture</subject><subject>Scaffolds</subject><subject>Structure-function relationships</subject><subject>Three dimensional printing</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kEFP3DAQhS1UBAvl0D9QReoFDmHHduzEx2oLlGolOMDZSuyJlFUSp3ZCtf--Q5f2UIm5eDT-9PTeY-wTh2sOINY7N11LqDgcsRUHU-aFVuIDW9Efz40q-Ck7S2kHAMZIecJOpdLG6KJasSf5LZtiN87oMxfGOYa-r5ses6FzMUwhhiVlydVtG3pP2zLRbc5waOI-jJ3LPL5gH6YBxznrxuylI4mP7Lit-4QXb-85e769edp8z7cPd_ebr9vcyaqC3BujKicKB96VddkAR2EK5OilFqiKlkZSksaDF0IWVe1KKUsg46gRnTxnlwfdKYafC6bZDl1ySAlGJN9W6FIrpbgGQr_8h-7CEkdyZ0UJXCktFCfq6kBR9pQitpa6Geq4txzsa9WWqrZ_qib285vi0gzo_5F_uyVgfQB-dT3u31eyPzaPB8nfuEaIWg</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Guo, Jia</creator><creator>Li, Yuanyuan</creator><creator>Gao, Zili</creator><creator>Lyu, Jiawei</creator><creator>Liu, Wenli</creator><creator>Duan, Yongchao</creator><creator>Zhou, Lixun</creator><creator>Gu, Qi</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9387-9525</orcidid></search><sort><creationdate>202208</creationdate><title>3D printed controllable microporous scaffolds support embryonic development in vitro</title><author>Guo, Jia ; Li, Yuanyuan ; Gao, Zili ; Lyu, Jiawei ; Liu, Wenli ; Duan, Yongchao ; Zhou, Lixun ; Gu, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3880-d9958c24c0dc7a7b01e294e1ed362e54ffff3652bd0d22348ac73370648e6eec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D printing</topic><topic>anisotropic microporous scaffolds</topic><topic>Cell culture</topic><topic>embryo implantation</topic><topic>Embryogenesis</topic><topic>Embryonic growth stage</topic><topic>Embryos</topic><topic>Implantation</topic><topic>in vitro culture</topic><topic>Scaffolds</topic><topic>Structure-function relationships</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jia</creatorcontrib><creatorcontrib>Li, Yuanyuan</creatorcontrib><creatorcontrib>Gao, Zili</creatorcontrib><creatorcontrib>Lyu, Jiawei</creatorcontrib><creatorcontrib>Liu, Wenli</creatorcontrib><creatorcontrib>Duan, Yongchao</creatorcontrib><creatorcontrib>Zhou, Lixun</creatorcontrib><creatorcontrib>Gu, Qi</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jia</au><au>Li, Yuanyuan</au><au>Gao, Zili</au><au>Lyu, Jiawei</au><au>Liu, Wenli</au><au>Duan, Yongchao</au><au>Zhou, Lixun</au><au>Gu, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printed controllable microporous scaffolds support embryonic development in vitro</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2022-08</date><risdate>2022</risdate><volume>237</volume><issue>8</issue><spage>3408</spage><epage>3420</epage><pages>3408-3420</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Little is known about the complex molecular and cellular events occurring during implantation, which represents a critical step for pregnancy. The conventional 2D culture could not support postimplantation embryos' normal development, and 3D conditions shed light into the “black box”. 3D printing technology has been widely used in recapitulating the structure and function of native tissues in vitro. Here, we 3D printed anisotropic microporous scaffolds to culture embryos by manipulating the advancing angle between printed layers, which affected embryo development. The 30° and 60° scaffolds promote embryo development with moderate embryo‐scaffold attachments. T‐positive cells and FOXA2‐positive cells were observed to appear in the posterior region of the embryo and migrated to the anterior region of the embryo on day 7. These findings demonstrate a 3D printed stand that supports embryonic development in vitro and the critical role of 3D architecture for embryo implantation, in which additive manufacturing is a versatile tool.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35699648</pmid><doi>10.1002/jcp.30810</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9387-9525</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2022-08, Vol.237 (8), p.3408-3420
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_2676555160
source Access via Wiley Online Library
subjects 3D printing
anisotropic microporous scaffolds
Cell culture
embryo implantation
Embryogenesis
Embryonic growth stage
Embryos
Implantation
in vitro culture
Scaffolds
Structure-function relationships
Three dimensional printing
title 3D printed controllable microporous scaffolds support embryonic development in vitro
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T11%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printed%20controllable%20microporous%20scaffolds%20support%20embryonic%20development%20in%20vitro&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Guo,%20Jia&rft.date=2022-08&rft.volume=237&rft.issue=8&rft.spage=3408&rft.epage=3420&rft.pages=3408-3420&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.30810&rft_dat=%3Cproquest_cross%3E2701556251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2701556251&rft_id=info:pmid/35699648&rfr_iscdi=true