Lactic acid-stabilised albumin for microsphere formulation and biomedical coatings

Microspheres of ovalbumin (OVA) ranging from 1 to 15 μm were prepared by emulsifying an aqueous solution of albumin in soya oil at room temperature then raising the temperature to 45°C for 30 min, prior to harvesting of the microspheres. Production of OVA nanospheres with size less than 500 nm was a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2001-01, Vol.22 (1), p.1-8
Hauptverfasser: Coombes, A.G.A., Breeze, V., Lin, Wu, Gray, T., Parker, K.G., Parker, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 1
container_start_page 1
container_title Biomaterials
container_volume 22
creator Coombes, A.G.A.
Breeze, V.
Lin, Wu
Gray, T.
Parker, K.G.
Parker, T.
description Microspheres of ovalbumin (OVA) ranging from 1 to 15 μm were prepared by emulsifying an aqueous solution of albumin in soya oil at room temperature then raising the temperature to 45°C for 30 min, prior to harvesting of the microspheres. Production of OVA nanospheres with size less than 500 nm was achieved by desolvation from aqueous albumin solutions using acetone. In both cases, lactic acid was added to the starting albumin solution to stabilise the resulting particles. Utilisation of an endogenous substance avoids the use of chemical crosslinking agents such as glutaraldehyde and associated toxicological concerns. Protein coating of knitted Dacron vascular grafts was performed by impregnation of the textile structure with lactic acid-stabilised ovalbumin nanospheres thereby providing a surface potentially resistant to blood platelet adhesion but conducive to endothelialisation. Protein release testing carried out in PBS at 37°C revealed that approximately 60% of the original albumin coating was retained by the Dacron graft material after 4 days and remained at this level for upto 4 weeks. Apart from the formulation of albumin microspheres for drug delivery, diagnostic applications and coating of biomedical textiles, the process of albumin stabilisation using lactic acid may be usefully applied to improve protein immobilisation on a wide range of biomaterial surfaces.
doi_str_mv 10.1016/S0142-9612(00)00074-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26764825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961200000740</els_id><sourcerecordid>18368821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-2c6d75dbba2930a15dde4842f7e49bbde6e41e100b9e704f2085de5eb08a05e83</originalsourceid><addsrcrecordid>eNqFkVtLJDEQhYMo6-juT1D6RdGHdiuZpDv9JCLrBQYWvDyHXKo10pcx6V7w3296ZnAe5ylU6quqwzmEnFC4okCL389AOcurgrILgEsAKHkOe2RGZSlzUYHYJ7Nv5JAcxfgBqQbOfpBDSkGKeVnOyNNC28HbTFvv8jho4xsf0WW6MWPru6zuQ9Z6G_q4fMeAU92OjR5832W6c5nxfYvOW91ktk_f3Vv8SQ5q3UT8tXmPyevdn5fbh3zx9_7x9maRWy75kDNbuFI4YzSr5qCpcA5Tg9Ul8soYhwVyihTAVFgCr1mS7FCgAalBoJwfk_P13mXoP0eMg2p9tNg0usN-jIoVZcElE7tByrng1W6QynkhJaMJFGtwMiYGrNUy-FaHL0VBTfGoVTxq8l4BqFU8CtLc6ebAaJJt26lNHgk42wA6Jk_roDvr45bjFFjBJwHXaw6Twf88BhWtx86mKALaQbne75DyHz9PrEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18368821</pqid></control><display><type>article</type><title>Lactic acid-stabilised albumin for microsphere formulation and biomedical coatings</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Coombes, A.G.A. ; Breeze, V. ; Lin, Wu ; Gray, T. ; Parker, K.G. ; Parker, T.</creator><creatorcontrib>Coombes, A.G.A. ; Breeze, V. ; Lin, Wu ; Gray, T. ; Parker, K.G. ; Parker, T.</creatorcontrib><description>Microspheres of ovalbumin (OVA) ranging from 1 to 15 μm were prepared by emulsifying an aqueous solution of albumin in soya oil at room temperature then raising the temperature to 45°C for 30 min, prior to harvesting of the microspheres. Production of OVA nanospheres with size less than 500 nm was achieved by desolvation from aqueous albumin solutions using acetone. In both cases, lactic acid was added to the starting albumin solution to stabilise the resulting particles. Utilisation of an endogenous substance avoids the use of chemical crosslinking agents such as glutaraldehyde and associated toxicological concerns. Protein coating of knitted Dacron vascular grafts was performed by impregnation of the textile structure with lactic acid-stabilised ovalbumin nanospheres thereby providing a surface potentially resistant to blood platelet adhesion but conducive to endothelialisation. Protein release testing carried out in PBS at 37°C revealed that approximately 60% of the original albumin coating was retained by the Dacron graft material after 4 days and remained at this level for upto 4 weeks. Apart from the formulation of albumin microspheres for drug delivery, diagnostic applications and coating of biomedical textiles, the process of albumin stabilisation using lactic acid may be usefully applied to improve protein immobilisation on a wide range of biomaterial surfaces.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/S0142-9612(00)00074-0</identifier><identifier>PMID: 11085377</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Acetone ; Albumin stabilisation ; Biological and medical sciences ; Blood Vessel Prosthesis ; Carboxylic acids ; Coated Materials, Biocompatible ; Coatings ; Crosslinking ; Emulsification ; Emulsions ; General pharmacology ; Grafts ; Impregnation ; Lactic Acid ; Medical sciences ; Microscopy, Electron ; Microscopy, Electron, Scanning ; Microspheres ; Ovalbumin ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Polyethylene Terephthalates ; Proteins ; Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) ; Soybean Oil ; Technology. Biomaterials. Equipments. Material. Instrumentation ; Vascular grafts</subject><ispartof>Biomaterials, 2001-01, Vol.22 (1), p.1-8</ispartof><rights>2000 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-2c6d75dbba2930a15dde4842f7e49bbde6e41e100b9e704f2085de5eb08a05e83</citedby><cites>FETCH-LOGICAL-c484t-2c6d75dbba2930a15dde4842f7e49bbde6e41e100b9e704f2085de5eb08a05e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961200000740$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14102641$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11085377$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coombes, A.G.A.</creatorcontrib><creatorcontrib>Breeze, V.</creatorcontrib><creatorcontrib>Lin, Wu</creatorcontrib><creatorcontrib>Gray, T.</creatorcontrib><creatorcontrib>Parker, K.G.</creatorcontrib><creatorcontrib>Parker, T.</creatorcontrib><title>Lactic acid-stabilised albumin for microsphere formulation and biomedical coatings</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Microspheres of ovalbumin (OVA) ranging from 1 to 15 μm were prepared by emulsifying an aqueous solution of albumin in soya oil at room temperature then raising the temperature to 45°C for 30 min, prior to harvesting of the microspheres. Production of OVA nanospheres with size less than 500 nm was achieved by desolvation from aqueous albumin solutions using acetone. In both cases, lactic acid was added to the starting albumin solution to stabilise the resulting particles. Utilisation of an endogenous substance avoids the use of chemical crosslinking agents such as glutaraldehyde and associated toxicological concerns. Protein coating of knitted Dacron vascular grafts was performed by impregnation of the textile structure with lactic acid-stabilised ovalbumin nanospheres thereby providing a surface potentially resistant to blood platelet adhesion but conducive to endothelialisation. Protein release testing carried out in PBS at 37°C revealed that approximately 60% of the original albumin coating was retained by the Dacron graft material after 4 days and remained at this level for upto 4 weeks. Apart from the formulation of albumin microspheres for drug delivery, diagnostic applications and coating of biomedical textiles, the process of albumin stabilisation using lactic acid may be usefully applied to improve protein immobilisation on a wide range of biomaterial surfaces.</description><subject>Acetone</subject><subject>Albumin stabilisation</subject><subject>Biological and medical sciences</subject><subject>Blood Vessel Prosthesis</subject><subject>Carboxylic acids</subject><subject>Coated Materials, Biocompatible</subject><subject>Coatings</subject><subject>Crosslinking</subject><subject>Emulsification</subject><subject>Emulsions</subject><subject>General pharmacology</subject><subject>Grafts</subject><subject>Impregnation</subject><subject>Lactic Acid</subject><subject>Medical sciences</subject><subject>Microscopy, Electron</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microspheres</subject><subject>Ovalbumin</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Polyethylene Terephthalates</subject><subject>Proteins</subject><subject>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</subject><subject>Soybean Oil</subject><subject>Technology. Biomaterials. Equipments. Material. Instrumentation</subject><subject>Vascular grafts</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkVtLJDEQhYMo6-juT1D6RdGHdiuZpDv9JCLrBQYWvDyHXKo10pcx6V7w3296ZnAe5ylU6quqwzmEnFC4okCL389AOcurgrILgEsAKHkOe2RGZSlzUYHYJ7Nv5JAcxfgBqQbOfpBDSkGKeVnOyNNC28HbTFvv8jho4xsf0WW6MWPru6zuQ9Z6G_q4fMeAU92OjR5832W6c5nxfYvOW91ktk_f3Vv8SQ5q3UT8tXmPyevdn5fbh3zx9_7x9maRWy75kDNbuFI4YzSr5qCpcA5Tg9Ul8soYhwVyihTAVFgCr1mS7FCgAalBoJwfk_P13mXoP0eMg2p9tNg0usN-jIoVZcElE7tByrng1W6QynkhJaMJFGtwMiYGrNUy-FaHL0VBTfGoVTxq8l4BqFU8CtLc6ebAaJJt26lNHgk42wA6Jk_roDvr45bjFFjBJwHXaw6Twf88BhWtx86mKALaQbne75DyHz9PrEQ</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Coombes, A.G.A.</creator><creator>Breeze, V.</creator><creator>Lin, Wu</creator><creator>Gray, T.</creator><creator>Parker, K.G.</creator><creator>Parker, T.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>F28</scope></search><sort><creationdate>20010101</creationdate><title>Lactic acid-stabilised albumin for microsphere formulation and biomedical coatings</title><author>Coombes, A.G.A. ; Breeze, V. ; Lin, Wu ; Gray, T. ; Parker, K.G. ; Parker, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-2c6d75dbba2930a15dde4842f7e49bbde6e41e100b9e704f2085de5eb08a05e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Acetone</topic><topic>Albumin stabilisation</topic><topic>Biological and medical sciences</topic><topic>Blood Vessel Prosthesis</topic><topic>Carboxylic acids</topic><topic>Coated Materials, Biocompatible</topic><topic>Coatings</topic><topic>Crosslinking</topic><topic>Emulsification</topic><topic>Emulsions</topic><topic>General pharmacology</topic><topic>Grafts</topic><topic>Impregnation</topic><topic>Lactic Acid</topic><topic>Medical sciences</topic><topic>Microscopy, Electron</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microspheres</topic><topic>Ovalbumin</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Polyethylene Terephthalates</topic><topic>Proteins</topic><topic>Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)</topic><topic>Soybean Oil</topic><topic>Technology. Biomaterials. Equipments. Material. Instrumentation</topic><topic>Vascular grafts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coombes, A.G.A.</creatorcontrib><creatorcontrib>Breeze, V.</creatorcontrib><creatorcontrib>Lin, Wu</creatorcontrib><creatorcontrib>Gray, T.</creatorcontrib><creatorcontrib>Parker, K.G.</creatorcontrib><creatorcontrib>Parker, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coombes, A.G.A.</au><au>Breeze, V.</au><au>Lin, Wu</au><au>Gray, T.</au><au>Parker, K.G.</au><au>Parker, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lactic acid-stabilised albumin for microsphere formulation and biomedical coatings</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2001-01-01</date><risdate>2001</risdate><volume>22</volume><issue>1</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Microspheres of ovalbumin (OVA) ranging from 1 to 15 μm were prepared by emulsifying an aqueous solution of albumin in soya oil at room temperature then raising the temperature to 45°C for 30 min, prior to harvesting of the microspheres. Production of OVA nanospheres with size less than 500 nm was achieved by desolvation from aqueous albumin solutions using acetone. In both cases, lactic acid was added to the starting albumin solution to stabilise the resulting particles. Utilisation of an endogenous substance avoids the use of chemical crosslinking agents such as glutaraldehyde and associated toxicological concerns. Protein coating of knitted Dacron vascular grafts was performed by impregnation of the textile structure with lactic acid-stabilised ovalbumin nanospheres thereby providing a surface potentially resistant to blood platelet adhesion but conducive to endothelialisation. Protein release testing carried out in PBS at 37°C revealed that approximately 60% of the original albumin coating was retained by the Dacron graft material after 4 days and remained at this level for upto 4 weeks. Apart from the formulation of albumin microspheres for drug delivery, diagnostic applications and coating of biomedical textiles, the process of albumin stabilisation using lactic acid may be usefully applied to improve protein immobilisation on a wide range of biomaterial surfaces.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>11085377</pmid><doi>10.1016/S0142-9612(00)00074-0</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2001-01, Vol.22 (1), p.1-8
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_26764825
source MEDLINE; Elsevier ScienceDirect Journals
subjects Acetone
Albumin stabilisation
Biological and medical sciences
Blood Vessel Prosthesis
Carboxylic acids
Coated Materials, Biocompatible
Coatings
Crosslinking
Emulsification
Emulsions
General pharmacology
Grafts
Impregnation
Lactic Acid
Medical sciences
Microscopy, Electron
Microscopy, Electron, Scanning
Microspheres
Ovalbumin
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Polyethylene Terephthalates
Proteins
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Soybean Oil
Technology. Biomaterials. Equipments. Material. Instrumentation
Vascular grafts
title Lactic acid-stabilised albumin for microsphere formulation and biomedical coatings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lactic%20acid-stabilised%20albumin%20for%20microsphere%20formulation%20and%20biomedical%20coatings&rft.jtitle=Biomaterials&rft.au=Coombes,%20A.G.A.&rft.date=2001-01-01&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/S0142-9612(00)00074-0&rft_dat=%3Cproquest_cross%3E18368821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18368821&rft_id=info:pmid/11085377&rft_els_id=S0142961200000740&rfr_iscdi=true