Boundary-rendering network for breast lesion segmentation in ultrasound images

•A specialized segmentation model that can address blurry or occluded edges in ultrasound images.•A differentiable boundary selection module that can automatically focus on the marginal area.•A GCN-based boundary rendering module that can incorporate global contour information.•A unified framework t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2022-08, Vol.80, p.102478-102478, Article 102478
Hauptverfasser: Huang, Ruobing, Lin, Mingrong, Dou, Haoran, Lin, Zehui, Ying, Qilong, Jia, Xiaohong, Xu, Wenwen, Mei, Zihan, Yang, Xin, Dong, Yijie, Zhou, Jianqiao, Ni, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102478
container_issue
container_start_page 102478
container_title Medical image analysis
container_volume 80
creator Huang, Ruobing
Lin, Mingrong
Dou, Haoran
Lin, Zehui
Ying, Qilong
Jia, Xiaohong
Xu, Wenwen
Mei, Zihan
Yang, Xin
Dong, Yijie
Zhou, Jianqiao
Ni, Dong
description •A specialized segmentation model that can address blurry or occluded edges in ultrasound images.•A differentiable boundary selection module that can automatically focus on the marginal area.•A GCN-based boundary rendering module that can incorporate global contour information.•A unified framework that can perform segmentation and classification simultaneously. Breast Ultrasound (BUS) has proven to be an effective tool for the early detection of cancer in the breast. A lesion segmentation provides identification of the boundary, shape, and location of the target, and serves as a crucial step toward accurate diagnosis. Despite recent efforts in developing machine learning algorithms to automate this process, problems remain due to the blurry or occluded edges and highly irregular nodule shapes. Existing methods often produce over-smooth or inaccurate results, failing the need of identifying detailed boundary structures which are of clinical interest. To overcome these challenges, we propose a novel boundary-rendering framework that explicitly highlights the importance of boundary for automated nodule segmentation in BUS images. It utilizes a boundary selection module to automatically focuses on the ambiguous boundary region and a graph convolutional-based boundary rendering module to exploit global contour information. Furthermore, the proposed framework embeds nodule classification via semantic segmentation and encourages co-learning across tasks. Validation experiments were performed on different BUS datasets to verify the robustness of the proposed method. Results show that the proposed method outperforms states-of-art segmentation approaches (Dice=0.854, IOU=0.919, HD=17.8) in nodule delineation, as well as obtains a higher classification accuracy than classical classification models. [Display omitted]
doi_str_mv 10.1016/j.media.2022.102478
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2675987456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841522001256</els_id><sourcerecordid>2675987456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-1d52d4b16b859e7fa46d475702df59e85bbc9dec2befc9ee9d15ae279417ae9a3</originalsourceid><addsrcrecordid>eNp9kE9PAyEQxYnRWK1-AhOzRy9bgYVlOXjQxn9Joxc9ExZmG-qWrbCr6beX2tqjJ2B4897MD6ELgicEk_J6MVmCdXpCMaWpQpmoDtAJKUqSV4wWh_s74SN0GuMCYywYw8doVPBSEsLYCXq56wZvdVjnAbyF4Pw889B_d-Eja7qQ1QF07LMWout8FmG-BN_rfvNwPhvaPui4ccjcUs8hnqGjRrcRznfnGL0_3L9Nn_LZ6-Pz9HaWm4LLPieWU8tqUtYVlyAazUrLBBeY2iYVKl7XRlowtIbGSABpCddAhWREaJC6GKOrre8qdJ8DxF4tXTTQttpDN0RFS8FlJRgvk7TYSk3oYgzQqFVIw4a1IlhtQKqF-gWpNiDVFmTqutwFDHX63ff8kUuCm60A0ppfDoKKxoE3ySmA6ZXt3L8BPyG1hsE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675987456</pqid></control><display><type>article</type><title>Boundary-rendering network for breast lesion segmentation in ultrasound images</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Ruobing ; Lin, Mingrong ; Dou, Haoran ; Lin, Zehui ; Ying, Qilong ; Jia, Xiaohong ; Xu, Wenwen ; Mei, Zihan ; Yang, Xin ; Dong, Yijie ; Zhou, Jianqiao ; Ni, Dong</creator><creatorcontrib>Huang, Ruobing ; Lin, Mingrong ; Dou, Haoran ; Lin, Zehui ; Ying, Qilong ; Jia, Xiaohong ; Xu, Wenwen ; Mei, Zihan ; Yang, Xin ; Dong, Yijie ; Zhou, Jianqiao ; Ni, Dong</creatorcontrib><description>•A specialized segmentation model that can address blurry or occluded edges in ultrasound images.•A differentiable boundary selection module that can automatically focus on the marginal area.•A GCN-based boundary rendering module that can incorporate global contour information.•A unified framework that can perform segmentation and classification simultaneously. Breast Ultrasound (BUS) has proven to be an effective tool for the early detection of cancer in the breast. A lesion segmentation provides identification of the boundary, shape, and location of the target, and serves as a crucial step toward accurate diagnosis. Despite recent efforts in developing machine learning algorithms to automate this process, problems remain due to the blurry or occluded edges and highly irregular nodule shapes. Existing methods often produce over-smooth or inaccurate results, failing the need of identifying detailed boundary structures which are of clinical interest. To overcome these challenges, we propose a novel boundary-rendering framework that explicitly highlights the importance of boundary for automated nodule segmentation in BUS images. It utilizes a boundary selection module to automatically focuses on the ambiguous boundary region and a graph convolutional-based boundary rendering module to exploit global contour information. Furthermore, the proposed framework embeds nodule classification via semantic segmentation and encourages co-learning across tasks. Validation experiments were performed on different BUS datasets to verify the robustness of the proposed method. Results show that the proposed method outperforms states-of-art segmentation approaches (Dice=0.854, IOU=0.919, HD=17.8) in nodule delineation, as well as obtains a higher classification accuracy than classical classification models. [Display omitted]</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2022.102478</identifier><identifier>PMID: 35691144</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Breast cancer ; Graph-convolution network ; Segmentation ; Ultrasound</subject><ispartof>Medical image analysis, 2022-08, Vol.80, p.102478-102478, Article 102478</ispartof><rights>2022</rights><rights>Copyright © 2022. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-1d52d4b16b859e7fa46d475702df59e85bbc9dec2befc9ee9d15ae279417ae9a3</citedby><cites>FETCH-LOGICAL-c359t-1d52d4b16b859e7fa46d475702df59e85bbc9dec2befc9ee9d15ae279417ae9a3</cites><orcidid>0000-0002-9146-6003 ; 0000-0001-8628-5489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1361841522001256$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35691144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Ruobing</creatorcontrib><creatorcontrib>Lin, Mingrong</creatorcontrib><creatorcontrib>Dou, Haoran</creatorcontrib><creatorcontrib>Lin, Zehui</creatorcontrib><creatorcontrib>Ying, Qilong</creatorcontrib><creatorcontrib>Jia, Xiaohong</creatorcontrib><creatorcontrib>Xu, Wenwen</creatorcontrib><creatorcontrib>Mei, Zihan</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Dong, Yijie</creatorcontrib><creatorcontrib>Zhou, Jianqiao</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><title>Boundary-rendering network for breast lesion segmentation in ultrasound images</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>•A specialized segmentation model that can address blurry or occluded edges in ultrasound images.•A differentiable boundary selection module that can automatically focus on the marginal area.•A GCN-based boundary rendering module that can incorporate global contour information.•A unified framework that can perform segmentation and classification simultaneously. Breast Ultrasound (BUS) has proven to be an effective tool for the early detection of cancer in the breast. A lesion segmentation provides identification of the boundary, shape, and location of the target, and serves as a crucial step toward accurate diagnosis. Despite recent efforts in developing machine learning algorithms to automate this process, problems remain due to the blurry or occluded edges and highly irregular nodule shapes. Existing methods often produce over-smooth or inaccurate results, failing the need of identifying detailed boundary structures which are of clinical interest. To overcome these challenges, we propose a novel boundary-rendering framework that explicitly highlights the importance of boundary for automated nodule segmentation in BUS images. It utilizes a boundary selection module to automatically focuses on the ambiguous boundary region and a graph convolutional-based boundary rendering module to exploit global contour information. Furthermore, the proposed framework embeds nodule classification via semantic segmentation and encourages co-learning across tasks. Validation experiments were performed on different BUS datasets to verify the robustness of the proposed method. Results show that the proposed method outperforms states-of-art segmentation approaches (Dice=0.854, IOU=0.919, HD=17.8) in nodule delineation, as well as obtains a higher classification accuracy than classical classification models. [Display omitted]</description><subject>Breast cancer</subject><subject>Graph-convolution network</subject><subject>Segmentation</subject><subject>Ultrasound</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PAyEQxYnRWK1-AhOzRy9bgYVlOXjQxn9Joxc9ExZmG-qWrbCr6beX2tqjJ2B4897MD6ELgicEk_J6MVmCdXpCMaWpQpmoDtAJKUqSV4wWh_s74SN0GuMCYywYw8doVPBSEsLYCXq56wZvdVjnAbyF4Pw889B_d-Eja7qQ1QF07LMWout8FmG-BN_rfvNwPhvaPui4ccjcUs8hnqGjRrcRznfnGL0_3L9Nn_LZ6-Pz9HaWm4LLPieWU8tqUtYVlyAazUrLBBeY2iYVKl7XRlowtIbGSABpCddAhWREaJC6GKOrre8qdJ8DxF4tXTTQttpDN0RFS8FlJRgvk7TYSk3oYgzQqFVIw4a1IlhtQKqF-gWpNiDVFmTqutwFDHX63ff8kUuCm60A0ppfDoKKxoE3ySmA6ZXt3L8BPyG1hsE</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Huang, Ruobing</creator><creator>Lin, Mingrong</creator><creator>Dou, Haoran</creator><creator>Lin, Zehui</creator><creator>Ying, Qilong</creator><creator>Jia, Xiaohong</creator><creator>Xu, Wenwen</creator><creator>Mei, Zihan</creator><creator>Yang, Xin</creator><creator>Dong, Yijie</creator><creator>Zhou, Jianqiao</creator><creator>Ni, Dong</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9146-6003</orcidid><orcidid>https://orcid.org/0000-0001-8628-5489</orcidid></search><sort><creationdate>20220801</creationdate><title>Boundary-rendering network for breast lesion segmentation in ultrasound images</title><author>Huang, Ruobing ; Lin, Mingrong ; Dou, Haoran ; Lin, Zehui ; Ying, Qilong ; Jia, Xiaohong ; Xu, Wenwen ; Mei, Zihan ; Yang, Xin ; Dong, Yijie ; Zhou, Jianqiao ; Ni, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-1d52d4b16b859e7fa46d475702df59e85bbc9dec2befc9ee9d15ae279417ae9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Breast cancer</topic><topic>Graph-convolution network</topic><topic>Segmentation</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Ruobing</creatorcontrib><creatorcontrib>Lin, Mingrong</creatorcontrib><creatorcontrib>Dou, Haoran</creatorcontrib><creatorcontrib>Lin, Zehui</creatorcontrib><creatorcontrib>Ying, Qilong</creatorcontrib><creatorcontrib>Jia, Xiaohong</creatorcontrib><creatorcontrib>Xu, Wenwen</creatorcontrib><creatorcontrib>Mei, Zihan</creatorcontrib><creatorcontrib>Yang, Xin</creatorcontrib><creatorcontrib>Dong, Yijie</creatorcontrib><creatorcontrib>Zhou, Jianqiao</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Ruobing</au><au>Lin, Mingrong</au><au>Dou, Haoran</au><au>Lin, Zehui</au><au>Ying, Qilong</au><au>Jia, Xiaohong</au><au>Xu, Wenwen</au><au>Mei, Zihan</au><au>Yang, Xin</au><au>Dong, Yijie</au><au>Zhou, Jianqiao</au><au>Ni, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary-rendering network for breast lesion segmentation in ultrasound images</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>80</volume><spage>102478</spage><epage>102478</epage><pages>102478-102478</pages><artnum>102478</artnum><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>•A specialized segmentation model that can address blurry or occluded edges in ultrasound images.•A differentiable boundary selection module that can automatically focus on the marginal area.•A GCN-based boundary rendering module that can incorporate global contour information.•A unified framework that can perform segmentation and classification simultaneously. Breast Ultrasound (BUS) has proven to be an effective tool for the early detection of cancer in the breast. A lesion segmentation provides identification of the boundary, shape, and location of the target, and serves as a crucial step toward accurate diagnosis. Despite recent efforts in developing machine learning algorithms to automate this process, problems remain due to the blurry or occluded edges and highly irregular nodule shapes. Existing methods often produce over-smooth or inaccurate results, failing the need of identifying detailed boundary structures which are of clinical interest. To overcome these challenges, we propose a novel boundary-rendering framework that explicitly highlights the importance of boundary for automated nodule segmentation in BUS images. It utilizes a boundary selection module to automatically focuses on the ambiguous boundary region and a graph convolutional-based boundary rendering module to exploit global contour information. Furthermore, the proposed framework embeds nodule classification via semantic segmentation and encourages co-learning across tasks. Validation experiments were performed on different BUS datasets to verify the robustness of the proposed method. Results show that the proposed method outperforms states-of-art segmentation approaches (Dice=0.854, IOU=0.919, HD=17.8) in nodule delineation, as well as obtains a higher classification accuracy than classical classification models. [Display omitted]</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>35691144</pmid><doi>10.1016/j.media.2022.102478</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9146-6003</orcidid><orcidid>https://orcid.org/0000-0001-8628-5489</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2022-08, Vol.80, p.102478-102478, Article 102478
issn 1361-8415
1361-8423
language eng
recordid cdi_proquest_miscellaneous_2675987456
source Elsevier ScienceDirect Journals
subjects Breast cancer
Graph-convolution network
Segmentation
Ultrasound
title Boundary-rendering network for breast lesion segmentation in ultrasound images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary-rendering%20network%20for%20breast%20lesion%20segmentation%20in%20ultrasound%20images&rft.jtitle=Medical%20image%20analysis&rft.au=Huang,%20Ruobing&rft.date=2022-08-01&rft.volume=80&rft.spage=102478&rft.epage=102478&rft.pages=102478-102478&rft.artnum=102478&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2022.102478&rft_dat=%3Cproquest_cross%3E2675987456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675987456&rft_id=info:pmid/35691144&rft_els_id=S1361841522001256&rfr_iscdi=true