Nanoclay-reinforced HA/alginate scaffolds as cell carriers and SDF-1 delivery-platforms for bone tissue engineering

[Display omitted] •Nanoreinforced HA/Alginate scaffolds were created by a simple mixing technique.•In vitro studies haven proven C2/M2 scaffolds biocompatibility and osteogenic ability.•M2 scaffolds boost mineralization even in a differentiation-free media.•In vivo studies proved SDF-1 release and b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2022-07, Vol.623, p.121895-121895, Article 121895
Hauptverfasser: Erezuma, Itsasne, Lukin, Izeia, Pimenta-Lopes, Carolina, Ventura, Francesc, Garcia-Garcia, Patricia, Reyes, Ricardo, Arnau, Mª Rosa, Delgado, Araceli, Taebnia, Nayere, Kadumudi, Firoz Babu, Dolatshahi-Pirouz, Alireza, Orive, Gorka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121895
container_issue
container_start_page 121895
container_title International journal of pharmaceutics
container_volume 623
creator Erezuma, Itsasne
Lukin, Izeia
Pimenta-Lopes, Carolina
Ventura, Francesc
Garcia-Garcia, Patricia
Reyes, Ricardo
Arnau, Mª Rosa
Delgado, Araceli
Taebnia, Nayere
Kadumudi, Firoz Babu
Dolatshahi-Pirouz, Alireza
Orive, Gorka
description [Display omitted] •Nanoreinforced HA/Alginate scaffolds were created by a simple mixing technique.•In vitro studies haven proven C2/M2 scaffolds biocompatibility and osteogenic ability.•M2 scaffolds boost mineralization even in a differentiation-free media.•In vivo studies proved SDF-1 release and bone regeneration capacity of C2/M2 scaffolds.•C2/M2 scaffolds showed potential for bone tissue engineering purposes. Bone tissue engineering has come on the scene to overcome the difficulties of the current treatment strategies. By combining biomaterials, active agents and growth factors, cells and nanomaterials, tissue engineering makes it possible to create new structures that enhance bone regeneration. Herein, hyaluronic acid and alginate were used to create biologically active hydrogels, and montmorillonite nanoclay was used to reinforce and stabilize them. The developed scaffolds were found to be biocompatible and osteogenic with mMSCs in vitro, especially those reinforced with the nanoclay, and allowed mineralization even in the absence of differentiation media. Moreover, an in vivo investigation was performed to establish the potential of the hydrogels to mend bone and act as cell-carriers and delivery platforms for SDF-1. Scaffolds embedded with SDF-1 exhibited the highest percentages of bone regeneration as well as of angiogenesis, which confirms the suitability of the scaffolds for bone. Although there are a number of obstacles to triumph over, these bioengineered structures showed potential as future bone regeneration treatments.
doi_str_mv 10.1016/j.ijpharm.2022.121895
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2675986825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517322004501</els_id><sourcerecordid>2675986825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-9786e857c059f51893844b490c15cfdccfb2709141527e60552858773b89613a3</originalsourceid><addsrcrecordid>eNqFkElPwzAQhS0EomX5CSAfuaR4iZecEGKXEByAs-U4k-IqcYqdIvXf46qFK5cZafTeG70PoTNKZpRQebmY-cXy08Z-xghjM8qorsQemlKteMFLJffRlHClC0EVn6CjlBaEEMkoP0QTLmRFBSunKL3YMLjOrosIPrRDdNDgx-tL2819sCPg5GzbDl2TsE3YQddhZ2P0EPMhNPjt9r6guIHOf0NcF8vOjjmkTzhPXA8B8OhTWgGGkAMBog_zE3TQ2i7B6W4fo4_7u_ebx-L59eHp5vq5cCVlY1EpLUEL5YioWpHrcV2WdVkRR4VrG-familS0TI3USCJEEwLrRSvdSUpt_wYXWxzl3H4WkEaTe_TpoINMKySYVKJSkvNRJaKrdTFIaUIrVlG39u4NpSYDW-zMDveZsPbbHln3_nuxaruoflz_QLOgqutAHLR74zNJOchZMo-ghtNM_h_XvwAvlSTYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675986825</pqid></control><display><type>article</type><title>Nanoclay-reinforced HA/alginate scaffolds as cell carriers and SDF-1 delivery-platforms for bone tissue engineering</title><source>Elsevier ScienceDirect Journals</source><creator>Erezuma, Itsasne ; Lukin, Izeia ; Pimenta-Lopes, Carolina ; Ventura, Francesc ; Garcia-Garcia, Patricia ; Reyes, Ricardo ; Arnau, Mª Rosa ; Delgado, Araceli ; Taebnia, Nayere ; Kadumudi, Firoz Babu ; Dolatshahi-Pirouz, Alireza ; Orive, Gorka</creator><creatorcontrib>Erezuma, Itsasne ; Lukin, Izeia ; Pimenta-Lopes, Carolina ; Ventura, Francesc ; Garcia-Garcia, Patricia ; Reyes, Ricardo ; Arnau, Mª Rosa ; Delgado, Araceli ; Taebnia, Nayere ; Kadumudi, Firoz Babu ; Dolatshahi-Pirouz, Alireza ; Orive, Gorka</creatorcontrib><description>[Display omitted] •Nanoreinforced HA/Alginate scaffolds were created by a simple mixing technique.•In vitro studies haven proven C2/M2 scaffolds biocompatibility and osteogenic ability.•M2 scaffolds boost mineralization even in a differentiation-free media.•In vivo studies proved SDF-1 release and bone regeneration capacity of C2/M2 scaffolds.•C2/M2 scaffolds showed potential for bone tissue engineering purposes. Bone tissue engineering has come on the scene to overcome the difficulties of the current treatment strategies. By combining biomaterials, active agents and growth factors, cells and nanomaterials, tissue engineering makes it possible to create new structures that enhance bone regeneration. Herein, hyaluronic acid and alginate were used to create biologically active hydrogels, and montmorillonite nanoclay was used to reinforce and stabilize them. The developed scaffolds were found to be biocompatible and osteogenic with mMSCs in vitro, especially those reinforced with the nanoclay, and allowed mineralization even in the absence of differentiation media. Moreover, an in vivo investigation was performed to establish the potential of the hydrogels to mend bone and act as cell-carriers and delivery platforms for SDF-1. Scaffolds embedded with SDF-1 exhibited the highest percentages of bone regeneration as well as of angiogenesis, which confirms the suitability of the scaffolds for bone. Although there are a number of obstacles to triumph over, these bioengineered structures showed potential as future bone regeneration treatments.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2022.121895</identifier><identifier>PMID: 35691524</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>3D Scaffold ; Biomaterials ; Bone ; Nanoclay ; SDF-1 ; Tissue Engineering</subject><ispartof>International journal of pharmaceutics, 2022-07, Vol.623, p.121895-121895, Article 121895</ispartof><rights>2022 The Author(s)</rights><rights>Copyright © 2022. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-9786e857c059f51893844b490c15cfdccfb2709141527e60552858773b89613a3</citedby><cites>FETCH-LOGICAL-c412t-9786e857c059f51893844b490c15cfdccfb2709141527e60552858773b89613a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378517322004501$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35691524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Erezuma, Itsasne</creatorcontrib><creatorcontrib>Lukin, Izeia</creatorcontrib><creatorcontrib>Pimenta-Lopes, Carolina</creatorcontrib><creatorcontrib>Ventura, Francesc</creatorcontrib><creatorcontrib>Garcia-Garcia, Patricia</creatorcontrib><creatorcontrib>Reyes, Ricardo</creatorcontrib><creatorcontrib>Arnau, Mª Rosa</creatorcontrib><creatorcontrib>Delgado, Araceli</creatorcontrib><creatorcontrib>Taebnia, Nayere</creatorcontrib><creatorcontrib>Kadumudi, Firoz Babu</creatorcontrib><creatorcontrib>Dolatshahi-Pirouz, Alireza</creatorcontrib><creatorcontrib>Orive, Gorka</creatorcontrib><title>Nanoclay-reinforced HA/alginate scaffolds as cell carriers and SDF-1 delivery-platforms for bone tissue engineering</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>[Display omitted] •Nanoreinforced HA/Alginate scaffolds were created by a simple mixing technique.•In vitro studies haven proven C2/M2 scaffolds biocompatibility and osteogenic ability.•M2 scaffolds boost mineralization even in a differentiation-free media.•In vivo studies proved SDF-1 release and bone regeneration capacity of C2/M2 scaffolds.•C2/M2 scaffolds showed potential for bone tissue engineering purposes. Bone tissue engineering has come on the scene to overcome the difficulties of the current treatment strategies. By combining biomaterials, active agents and growth factors, cells and nanomaterials, tissue engineering makes it possible to create new structures that enhance bone regeneration. Herein, hyaluronic acid and alginate were used to create biologically active hydrogels, and montmorillonite nanoclay was used to reinforce and stabilize them. The developed scaffolds were found to be biocompatible and osteogenic with mMSCs in vitro, especially those reinforced with the nanoclay, and allowed mineralization even in the absence of differentiation media. Moreover, an in vivo investigation was performed to establish the potential of the hydrogels to mend bone and act as cell-carriers and delivery platforms for SDF-1. Scaffolds embedded with SDF-1 exhibited the highest percentages of bone regeneration as well as of angiogenesis, which confirms the suitability of the scaffolds for bone. Although there are a number of obstacles to triumph over, these bioengineered structures showed potential as future bone regeneration treatments.</description><subject>3D Scaffold</subject><subject>Biomaterials</subject><subject>Bone</subject><subject>Nanoclay</subject><subject>SDF-1</subject><subject>Tissue Engineering</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkElPwzAQhS0EomX5CSAfuaR4iZecEGKXEByAs-U4k-IqcYqdIvXf46qFK5cZafTeG70PoTNKZpRQebmY-cXy08Z-xghjM8qorsQemlKteMFLJffRlHClC0EVn6CjlBaEEMkoP0QTLmRFBSunKL3YMLjOrosIPrRDdNDgx-tL2819sCPg5GzbDl2TsE3YQddhZ2P0EPMhNPjt9r6guIHOf0NcF8vOjjmkTzhPXA8B8OhTWgGGkAMBog_zE3TQ2i7B6W4fo4_7u_ebx-L59eHp5vq5cCVlY1EpLUEL5YioWpHrcV2WdVkRR4VrG-familS0TI3USCJEEwLrRSvdSUpt_wYXWxzl3H4WkEaTe_TpoINMKySYVKJSkvNRJaKrdTFIaUIrVlG39u4NpSYDW-zMDveZsPbbHln3_nuxaruoflz_QLOgqutAHLR74zNJOchZMo-ghtNM_h_XvwAvlSTYQ</recordid><startdate>20220725</startdate><enddate>20220725</enddate><creator>Erezuma, Itsasne</creator><creator>Lukin, Izeia</creator><creator>Pimenta-Lopes, Carolina</creator><creator>Ventura, Francesc</creator><creator>Garcia-Garcia, Patricia</creator><creator>Reyes, Ricardo</creator><creator>Arnau, Mª Rosa</creator><creator>Delgado, Araceli</creator><creator>Taebnia, Nayere</creator><creator>Kadumudi, Firoz Babu</creator><creator>Dolatshahi-Pirouz, Alireza</creator><creator>Orive, Gorka</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220725</creationdate><title>Nanoclay-reinforced HA/alginate scaffolds as cell carriers and SDF-1 delivery-platforms for bone tissue engineering</title><author>Erezuma, Itsasne ; Lukin, Izeia ; Pimenta-Lopes, Carolina ; Ventura, Francesc ; Garcia-Garcia, Patricia ; Reyes, Ricardo ; Arnau, Mª Rosa ; Delgado, Araceli ; Taebnia, Nayere ; Kadumudi, Firoz Babu ; Dolatshahi-Pirouz, Alireza ; Orive, Gorka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-9786e857c059f51893844b490c15cfdccfb2709141527e60552858773b89613a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D Scaffold</topic><topic>Biomaterials</topic><topic>Bone</topic><topic>Nanoclay</topic><topic>SDF-1</topic><topic>Tissue Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erezuma, Itsasne</creatorcontrib><creatorcontrib>Lukin, Izeia</creatorcontrib><creatorcontrib>Pimenta-Lopes, Carolina</creatorcontrib><creatorcontrib>Ventura, Francesc</creatorcontrib><creatorcontrib>Garcia-Garcia, Patricia</creatorcontrib><creatorcontrib>Reyes, Ricardo</creatorcontrib><creatorcontrib>Arnau, Mª Rosa</creatorcontrib><creatorcontrib>Delgado, Araceli</creatorcontrib><creatorcontrib>Taebnia, Nayere</creatorcontrib><creatorcontrib>Kadumudi, Firoz Babu</creatorcontrib><creatorcontrib>Dolatshahi-Pirouz, Alireza</creatorcontrib><creatorcontrib>Orive, Gorka</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erezuma, Itsasne</au><au>Lukin, Izeia</au><au>Pimenta-Lopes, Carolina</au><au>Ventura, Francesc</au><au>Garcia-Garcia, Patricia</au><au>Reyes, Ricardo</au><au>Arnau, Mª Rosa</au><au>Delgado, Araceli</au><au>Taebnia, Nayere</au><au>Kadumudi, Firoz Babu</au><au>Dolatshahi-Pirouz, Alireza</au><au>Orive, Gorka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoclay-reinforced HA/alginate scaffolds as cell carriers and SDF-1 delivery-platforms for bone tissue engineering</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2022-07-25</date><risdate>2022</risdate><volume>623</volume><spage>121895</spage><epage>121895</epage><pages>121895-121895</pages><artnum>121895</artnum><issn>0378-5173</issn><eissn>1873-3476</eissn><abstract>[Display omitted] •Nanoreinforced HA/Alginate scaffolds were created by a simple mixing technique.•In vitro studies haven proven C2/M2 scaffolds biocompatibility and osteogenic ability.•M2 scaffolds boost mineralization even in a differentiation-free media.•In vivo studies proved SDF-1 release and bone regeneration capacity of C2/M2 scaffolds.•C2/M2 scaffolds showed potential for bone tissue engineering purposes. Bone tissue engineering has come on the scene to overcome the difficulties of the current treatment strategies. By combining biomaterials, active agents and growth factors, cells and nanomaterials, tissue engineering makes it possible to create new structures that enhance bone regeneration. Herein, hyaluronic acid and alginate were used to create biologically active hydrogels, and montmorillonite nanoclay was used to reinforce and stabilize them. The developed scaffolds were found to be biocompatible and osteogenic with mMSCs in vitro, especially those reinforced with the nanoclay, and allowed mineralization even in the absence of differentiation media. Moreover, an in vivo investigation was performed to establish the potential of the hydrogels to mend bone and act as cell-carriers and delivery platforms for SDF-1. Scaffolds embedded with SDF-1 exhibited the highest percentages of bone regeneration as well as of angiogenesis, which confirms the suitability of the scaffolds for bone. Although there are a number of obstacles to triumph over, these bioengineered structures showed potential as future bone regeneration treatments.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>35691524</pmid><doi>10.1016/j.ijpharm.2022.121895</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-5173
ispartof International journal of pharmaceutics, 2022-07, Vol.623, p.121895-121895, Article 121895
issn 0378-5173
1873-3476
language eng
recordid cdi_proquest_miscellaneous_2675986825
source Elsevier ScienceDirect Journals
subjects 3D Scaffold
Biomaterials
Bone
Nanoclay
SDF-1
Tissue Engineering
title Nanoclay-reinforced HA/alginate scaffolds as cell carriers and SDF-1 delivery-platforms for bone tissue engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A12%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoclay-reinforced%20HA/alginate%20scaffolds%20as%20cell%20carriers%20and%20SDF-1%20delivery-platforms%20for%20bone%20tissue%20engineering&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Erezuma,%20Itsasne&rft.date=2022-07-25&rft.volume=623&rft.spage=121895&rft.epage=121895&rft.pages=121895-121895&rft.artnum=121895&rft.issn=0378-5173&rft.eissn=1873-3476&rft_id=info:doi/10.1016/j.ijpharm.2022.121895&rft_dat=%3Cproquest_cross%3E2675986825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675986825&rft_id=info:pmid/35691524&rft_els_id=S0378517322004501&rfr_iscdi=true