Ligand-Centered Hydrogen Evolution with Ni(II) and Pd(II)DMTH

In this study, we report a pair of electrocatalysts for the hydrogen evolution reaction (HER) based on the noninnocent ligand diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-pyridinehydrazone) (H2DMTH, H2L1). The neutral complexes NiL1 and PdL1 were synthesized and characterized by spectroscopic and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2022-06, Vol.61 (25), p.9792-9800
Hauptverfasser: Phipps, Christine A., Hofsommer, Dillon T., Toda, Megan J., Nkurunziza, Francois, Shah, Bhoomi, Spurgeon, Joshua M., Kozlowski, Pawel M., Buchanan, Robert M., Grapperhaus, Craig A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9800
container_issue 25
container_start_page 9792
container_title Inorganic chemistry
container_volume 61
creator Phipps, Christine A.
Hofsommer, Dillon T.
Toda, Megan J.
Nkurunziza, Francois
Shah, Bhoomi
Spurgeon, Joshua M.
Kozlowski, Pawel M.
Buchanan, Robert M.
Grapperhaus, Craig A.
description In this study, we report a pair of electrocatalysts for the hydrogen evolution reaction (HER) based on the noninnocent ligand diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-pyridinehydrazone) (H2DMTH, H2L1). The neutral complexes NiL1 and PdL1 were synthesized and characterized by spectroscopic and electrochemical methods. The complexes contain a non-coordinating, basic hydrazino nitrogen that is protonated during the HER. The pK a of this nitrogen was determined by spectrophotometric titration in acetonitrile to be 12.71 for NiL1 and 13.03 for PdL1. Cyclic voltammograms of both NiL1 and PdL1 in acetonitrile exhibit diffusion-controlled, reversible ligand-centered events at −1.83 and −1.79 V (vs ferrocenium/ferrocene) for NiL1 and PdL1, respectively. A quasi-reversible, ligand-centered event is observed at −2.43 and −2.34 V for NiL1 and PdL1, respectively. The HER activity in acetonitrile was evaluated using a series of neutral and cationic acids for each catalyst. Kinetic isotope effect (KIE) studies suggest that the precatalytic event observed is associated with a proton-coupled electron transfer step. The highest turnover frequency values observed were 6150 s–1 at an overpotential of 0.74 V for NiL1 and 8280 s–1 at an overpotential of 0.44 V for PdL1. Density functional theory (DFT) computations suggest both complexes follow a ligand-centered HER mechanism where the metals remain in the +2 oxidation state.
doi_str_mv 10.1021/acs.inorgchem.2c01326
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2675605050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675605050</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-33ac86c18ad14bb62c9ebd117985c39773996ccc41a41ec1a1ab8d47f2e360e03</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhhujEUR_gmaPeFjstNvu9uDBIAoJfhww8dZ0uwWWLFtsdzX8e0tArmYOM4fnnck8CF0DHgAmcKe0H5S1dQu9NOsB0Rgo4SeoC4zgmAH-PEVdjMMMnIsOuvB-hTEWNOHnqEMZz1JKRBfdT8uFqot4aOrGOFNE423h7MLU0ejbVm1T2jr6KZtl9Fr2J5PbKLDRe7EbH19m40t0NleVN1eH3kMfT6PZcBxP354nw4dprCiDJqZU6YxryFQBSZ5zooXJC4BUZExTkaZUCK61TkAlYDQoUHlWJOmcGMqxwbSH-vu9G2e_WuMbuS69NlWlamNbLwlPGccsVEDZHtXOeu_MXG5cuVZuKwHLnTkZzMmjOXkwF3I3hxNtvjbFMfWnKgCwB3b5lW1dHT7-Z-kvBY18Cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675605050</pqid></control><display><type>article</type><title>Ligand-Centered Hydrogen Evolution with Ni(II) and Pd(II)DMTH</title><source>ACS Publications</source><creator>Phipps, Christine A. ; Hofsommer, Dillon T. ; Toda, Megan J. ; Nkurunziza, Francois ; Shah, Bhoomi ; Spurgeon, Joshua M. ; Kozlowski, Pawel M. ; Buchanan, Robert M. ; Grapperhaus, Craig A.</creator><creatorcontrib>Phipps, Christine A. ; Hofsommer, Dillon T. ; Toda, Megan J. ; Nkurunziza, Francois ; Shah, Bhoomi ; Spurgeon, Joshua M. ; Kozlowski, Pawel M. ; Buchanan, Robert M. ; Grapperhaus, Craig A.</creatorcontrib><description>In this study, we report a pair of electrocatalysts for the hydrogen evolution reaction (HER) based on the noninnocent ligand diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-pyridinehydrazone) (H2DMTH, H2L1). The neutral complexes NiL1 and PdL1 were synthesized and characterized by spectroscopic and electrochemical methods. The complexes contain a non-coordinating, basic hydrazino nitrogen that is protonated during the HER. The pK a of this nitrogen was determined by spectrophotometric titration in acetonitrile to be 12.71 for NiL1 and 13.03 for PdL1. Cyclic voltammograms of both NiL1 and PdL1 in acetonitrile exhibit diffusion-controlled, reversible ligand-centered events at −1.83 and −1.79 V (vs ferrocenium/ferrocene) for NiL1 and PdL1, respectively. A quasi-reversible, ligand-centered event is observed at −2.43 and −2.34 V for NiL1 and PdL1, respectively. The HER activity in acetonitrile was evaluated using a series of neutral and cationic acids for each catalyst. Kinetic isotope effect (KIE) studies suggest that the precatalytic event observed is associated with a proton-coupled electron transfer step. The highest turnover frequency values observed were 6150 s–1 at an overpotential of 0.74 V for NiL1 and 8280 s–1 at an overpotential of 0.44 V for PdL1. Density functional theory (DFT) computations suggest both complexes follow a ligand-centered HER mechanism where the metals remain in the +2 oxidation state.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.2c01326</identifier><identifier>PMID: 35687329</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Inorganic chemistry, 2022-06, Vol.61 (25), p.9792-9800</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-33ac86c18ad14bb62c9ebd117985c39773996ccc41a41ec1a1ab8d47f2e360e03</citedby><cites>FETCH-LOGICAL-a351t-33ac86c18ad14bb62c9ebd117985c39773996ccc41a41ec1a1ab8d47f2e360e03</cites><orcidid>0000-0002-0368-1150 ; 0000-0002-2987-0865 ; 0000-0001-8638-2465 ; 0000-0001-6803-0204 ; 0000-0001-8653-5388 ; 0000-0003-4924-7488 ; 0000-0003-4889-2645 ; 0000-0002-4913-0848 ; 0000-0002-4090-8078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.2c01326$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.2c01326$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35687329$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Phipps, Christine A.</creatorcontrib><creatorcontrib>Hofsommer, Dillon T.</creatorcontrib><creatorcontrib>Toda, Megan J.</creatorcontrib><creatorcontrib>Nkurunziza, Francois</creatorcontrib><creatorcontrib>Shah, Bhoomi</creatorcontrib><creatorcontrib>Spurgeon, Joshua M.</creatorcontrib><creatorcontrib>Kozlowski, Pawel M.</creatorcontrib><creatorcontrib>Buchanan, Robert M.</creatorcontrib><creatorcontrib>Grapperhaus, Craig A.</creatorcontrib><title>Ligand-Centered Hydrogen Evolution with Ni(II) and Pd(II)DMTH</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>In this study, we report a pair of electrocatalysts for the hydrogen evolution reaction (HER) based on the noninnocent ligand diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-pyridinehydrazone) (H2DMTH, H2L1). The neutral complexes NiL1 and PdL1 were synthesized and characterized by spectroscopic and electrochemical methods. The complexes contain a non-coordinating, basic hydrazino nitrogen that is protonated during the HER. The pK a of this nitrogen was determined by spectrophotometric titration in acetonitrile to be 12.71 for NiL1 and 13.03 for PdL1. Cyclic voltammograms of both NiL1 and PdL1 in acetonitrile exhibit diffusion-controlled, reversible ligand-centered events at −1.83 and −1.79 V (vs ferrocenium/ferrocene) for NiL1 and PdL1, respectively. A quasi-reversible, ligand-centered event is observed at −2.43 and −2.34 V for NiL1 and PdL1, respectively. The HER activity in acetonitrile was evaluated using a series of neutral and cationic acids for each catalyst. Kinetic isotope effect (KIE) studies suggest that the precatalytic event observed is associated with a proton-coupled electron transfer step. The highest turnover frequency values observed were 6150 s–1 at an overpotential of 0.74 V for NiL1 and 8280 s–1 at an overpotential of 0.44 V for PdL1. Density functional theory (DFT) computations suggest both complexes follow a ligand-centered HER mechanism where the metals remain in the +2 oxidation state.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEQhhujEUR_gmaPeFjstNvu9uDBIAoJfhww8dZ0uwWWLFtsdzX8e0tArmYOM4fnnck8CF0DHgAmcKe0H5S1dQu9NOsB0Rgo4SeoC4zgmAH-PEVdjMMMnIsOuvB-hTEWNOHnqEMZz1JKRBfdT8uFqot4aOrGOFNE423h7MLU0ejbVm1T2jr6KZtl9Fr2J5PbKLDRe7EbH19m40t0NleVN1eH3kMfT6PZcBxP354nw4dprCiDJqZU6YxryFQBSZ5zooXJC4BUZExTkaZUCK61TkAlYDQoUHlWJOmcGMqxwbSH-vu9G2e_WuMbuS69NlWlamNbLwlPGccsVEDZHtXOeu_MXG5cuVZuKwHLnTkZzMmjOXkwF3I3hxNtvjbFMfWnKgCwB3b5lW1dHT7-Z-kvBY18Cw</recordid><startdate>20220627</startdate><enddate>20220627</enddate><creator>Phipps, Christine A.</creator><creator>Hofsommer, Dillon T.</creator><creator>Toda, Megan J.</creator><creator>Nkurunziza, Francois</creator><creator>Shah, Bhoomi</creator><creator>Spurgeon, Joshua M.</creator><creator>Kozlowski, Pawel M.</creator><creator>Buchanan, Robert M.</creator><creator>Grapperhaus, Craig A.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0368-1150</orcidid><orcidid>https://orcid.org/0000-0002-2987-0865</orcidid><orcidid>https://orcid.org/0000-0001-8638-2465</orcidid><orcidid>https://orcid.org/0000-0001-6803-0204</orcidid><orcidid>https://orcid.org/0000-0001-8653-5388</orcidid><orcidid>https://orcid.org/0000-0003-4924-7488</orcidid><orcidid>https://orcid.org/0000-0003-4889-2645</orcidid><orcidid>https://orcid.org/0000-0002-4913-0848</orcidid><orcidid>https://orcid.org/0000-0002-4090-8078</orcidid></search><sort><creationdate>20220627</creationdate><title>Ligand-Centered Hydrogen Evolution with Ni(II) and Pd(II)DMTH</title><author>Phipps, Christine A. ; Hofsommer, Dillon T. ; Toda, Megan J. ; Nkurunziza, Francois ; Shah, Bhoomi ; Spurgeon, Joshua M. ; Kozlowski, Pawel M. ; Buchanan, Robert M. ; Grapperhaus, Craig A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-33ac86c18ad14bb62c9ebd117985c39773996ccc41a41ec1a1ab8d47f2e360e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phipps, Christine A.</creatorcontrib><creatorcontrib>Hofsommer, Dillon T.</creatorcontrib><creatorcontrib>Toda, Megan J.</creatorcontrib><creatorcontrib>Nkurunziza, Francois</creatorcontrib><creatorcontrib>Shah, Bhoomi</creatorcontrib><creatorcontrib>Spurgeon, Joshua M.</creatorcontrib><creatorcontrib>Kozlowski, Pawel M.</creatorcontrib><creatorcontrib>Buchanan, Robert M.</creatorcontrib><creatorcontrib>Grapperhaus, Craig A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phipps, Christine A.</au><au>Hofsommer, Dillon T.</au><au>Toda, Megan J.</au><au>Nkurunziza, Francois</au><au>Shah, Bhoomi</au><au>Spurgeon, Joshua M.</au><au>Kozlowski, Pawel M.</au><au>Buchanan, Robert M.</au><au>Grapperhaus, Craig A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ligand-Centered Hydrogen Evolution with Ni(II) and Pd(II)DMTH</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2022-06-27</date><risdate>2022</risdate><volume>61</volume><issue>25</issue><spage>9792</spage><epage>9800</epage><pages>9792-9800</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>In this study, we report a pair of electrocatalysts for the hydrogen evolution reaction (HER) based on the noninnocent ligand diacetyl-2-(4-methyl-3-thiosemicarbazone)-3-(2-pyridinehydrazone) (H2DMTH, H2L1). The neutral complexes NiL1 and PdL1 were synthesized and characterized by spectroscopic and electrochemical methods. The complexes contain a non-coordinating, basic hydrazino nitrogen that is protonated during the HER. The pK a of this nitrogen was determined by spectrophotometric titration in acetonitrile to be 12.71 for NiL1 and 13.03 for PdL1. Cyclic voltammograms of both NiL1 and PdL1 in acetonitrile exhibit diffusion-controlled, reversible ligand-centered events at −1.83 and −1.79 V (vs ferrocenium/ferrocene) for NiL1 and PdL1, respectively. A quasi-reversible, ligand-centered event is observed at −2.43 and −2.34 V for NiL1 and PdL1, respectively. The HER activity in acetonitrile was evaluated using a series of neutral and cationic acids for each catalyst. Kinetic isotope effect (KIE) studies suggest that the precatalytic event observed is associated with a proton-coupled electron transfer step. The highest turnover frequency values observed were 6150 s–1 at an overpotential of 0.74 V for NiL1 and 8280 s–1 at an overpotential of 0.44 V for PdL1. Density functional theory (DFT) computations suggest both complexes follow a ligand-centered HER mechanism where the metals remain in the +2 oxidation state.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35687329</pmid><doi>10.1021/acs.inorgchem.2c01326</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0368-1150</orcidid><orcidid>https://orcid.org/0000-0002-2987-0865</orcidid><orcidid>https://orcid.org/0000-0001-8638-2465</orcidid><orcidid>https://orcid.org/0000-0001-6803-0204</orcidid><orcidid>https://orcid.org/0000-0001-8653-5388</orcidid><orcidid>https://orcid.org/0000-0003-4924-7488</orcidid><orcidid>https://orcid.org/0000-0003-4889-2645</orcidid><orcidid>https://orcid.org/0000-0002-4913-0848</orcidid><orcidid>https://orcid.org/0000-0002-4090-8078</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2022-06, Vol.61 (25), p.9792-9800
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_2675605050
source ACS Publications
title Ligand-Centered Hydrogen Evolution with Ni(II) and Pd(II)DMTH
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ligand-Centered%20Hydrogen%20Evolution%20with%20Ni(II)%20and%20Pd(II)DMTH&rft.jtitle=Inorganic%20chemistry&rft.au=Phipps,%20Christine%20A.&rft.date=2022-06-27&rft.volume=61&rft.issue=25&rft.spage=9792&rft.epage=9800&rft.pages=9792-9800&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.2c01326&rft_dat=%3Cproquest_cross%3E2675605050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675605050&rft_id=info:pmid/35687329&rfr_iscdi=true