Predicting resilience through the lens of competing adjustments to vegetation function
There is a pressing need to better understand ecosystem resilience to droughts and heatwaves. Eco‐evolutionary optimization approaches have been proposed as means to build this understanding in land surface models and improve their predictive capability, but competing approaches are yet to be tested...
Gespeichert in:
Veröffentlicht in: | Plant, cell and environment cell and environment, 2022-09, Vol.45 (9), p.2744-2761 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2761 |
---|---|
container_issue | 9 |
container_start_page | 2744 |
container_title | Plant, cell and environment |
container_volume | 45 |
creator | Sabot, Manon E. B. De Kauwe, Martin G. Pitman, Andy J. Ellsworth, David S. Medlyn, Belinda E. Caldararu, Silvia Zaehle, Sönke Crous, Kristine Y. Gimeno, Teresa E. Wujeska‐Klause, Agnieszka Mu, Mengyuan Yang, Jinyan |
description | There is a pressing need to better understand ecosystem resilience to droughts and heatwaves. Eco‐evolutionary optimization approaches have been proposed as means to build this understanding in land surface models and improve their predictive capability, but competing approaches are yet to be tested together. Here, we coupled approaches that optimize canopy gas exchange and leaf nitrogen investment, respectively, extending both approaches to account for hydraulic impairment. We assessed model predictions using observations from a native Eucalyptus woodland that experienced repeated droughts and heatwaves between 2013 and 2020, whilst exposed to an elevated [CO2] treatment. Our combined approaches improved predictions of transpiration and enhanced the simulated magnitude of the CO2 fertilization effect on gross primary productivity. The competing approaches also worked consistently along axes of change in soil moisture, leaf area, and [CO2]. Despite predictions of a significant percentage loss of hydraulic conductivity due to embolism (PLC) in 2013, 2014, 2016, and 2017 (99th percentile PLC > 45%), simulated hydraulic legacy effects were small and short‐lived (2 months). Our analysis suggests that leaf shedding and/or suppressed foliage growth formed a strategy to mitigate drought risk. Accounting for foliage responses to water availability has the potential to improve model predictions of ecosystem resilience. |
doi_str_mv | 10.1111/pce.14376 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2675603462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675603462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3886-5e36ed9fcc0ba834d0e052da2c719ae5c98131eb341473045a1aa2877e08e1613</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqUw8AeQJRYY0tpxYicjqsqHhEQHYLVc59KmSuxiJ6D-e9ymMCDh5azTc6_uHoQuKRnT8CYbDWOaMMGP0JAynkaMJOQYDQlNSCRETgfozPs1IaEh8lM0YCnPeBgYove5g6LSbWWW2IGv6gqMBtyunO2Wq1AB12A8tiXWttnAHlTFuvNtA6b1uLX4E5bQqrayBped0bvPOTopVe3h4lBH6O1-9jp9jJ5fHp6md8-RZlnGoxQYhyIvtSYLlbGkIEDSuFCxFjRXkOo8o4zCgiVh8XBUqqhScSYEkAwop2yEbvrcjbMfHfhWNpXXUNfKgO28jLlIOWEJjwN6_Qdd286ZsJ2MRTCTc76nbntKO-u9g1JuXNUot5WUyJ1sGWTLvezAXh0Su0UDxS_5YzcAkx74qmrY_p8k59NZH_kNYK2Idw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700196662</pqid></control><display><type>article</type><title>Predicting resilience through the lens of competing adjustments to vegetation function</title><source>Access via Wiley Online Library</source><creator>Sabot, Manon E. B. ; De Kauwe, Martin G. ; Pitman, Andy J. ; Ellsworth, David S. ; Medlyn, Belinda E. ; Caldararu, Silvia ; Zaehle, Sönke ; Crous, Kristine Y. ; Gimeno, Teresa E. ; Wujeska‐Klause, Agnieszka ; Mu, Mengyuan ; Yang, Jinyan</creator><creatorcontrib>Sabot, Manon E. B. ; De Kauwe, Martin G. ; Pitman, Andy J. ; Ellsworth, David S. ; Medlyn, Belinda E. ; Caldararu, Silvia ; Zaehle, Sönke ; Crous, Kristine Y. ; Gimeno, Teresa E. ; Wujeska‐Klause, Agnieszka ; Mu, Mengyuan ; Yang, Jinyan</creatorcontrib><description>There is a pressing need to better understand ecosystem resilience to droughts and heatwaves. Eco‐evolutionary optimization approaches have been proposed as means to build this understanding in land surface models and improve their predictive capability, but competing approaches are yet to be tested together. Here, we coupled approaches that optimize canopy gas exchange and leaf nitrogen investment, respectively, extending both approaches to account for hydraulic impairment. We assessed model predictions using observations from a native Eucalyptus woodland that experienced repeated droughts and heatwaves between 2013 and 2020, whilst exposed to an elevated [CO2] treatment. Our combined approaches improved predictions of transpiration and enhanced the simulated magnitude of the CO2 fertilization effect on gross primary productivity. The competing approaches also worked consistently along axes of change in soil moisture, leaf area, and [CO2]. Despite predictions of a significant percentage loss of hydraulic conductivity due to embolism (PLC) in 2013, 2014, 2016, and 2017 (99th percentile PLC > 45%), simulated hydraulic legacy effects were small and short‐lived (2 months). Our analysis suggests that leaf shedding and/or suppressed foliage growth formed a strategy to mitigate drought risk. Accounting for foliage responses to water availability has the potential to improve model predictions of ecosystem resilience.</description><identifier>ISSN: 0140-7791</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/pce.14376</identifier><identifier>PMID: 35686437</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Drought ; Ecosystem resilience ; elevated CO2 ; Embolism ; Environmental risk ; Eucalyptus ; Fertilization ; Foliage ; Gas exchange ; hydraulic legacies ; Hydraulics ; land surface models ; Leaf area ; leaf area index ; Leaves ; Moisture effects ; nitrogen ; Optimization ; plant optimality ; Predictions ; Resilience ; Soil moisture ; Transpiration ; vegetation models ; Water availability ; Woodlands</subject><ispartof>Plant, cell and environment, 2022-09, Vol.45 (9), p.2744-2761</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd.</rights><rights>This article is protected by copyright. All rights reserved.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3886-5e36ed9fcc0ba834d0e052da2c719ae5c98131eb341473045a1aa2877e08e1613</citedby><cites>FETCH-LOGICAL-c3886-5e36ed9fcc0ba834d0e052da2c719ae5c98131eb341473045a1aa2877e08e1613</cites><orcidid>0000-0001-9478-7593 ; 0000-0001-6517-5504 ; 0000-0001-5602-7956 ; 0000-0002-9440-4553 ; 0000-0002-9699-2272 ; 0000-0002-3399-9098 ; 0000-0003-0604-3274 ; 0000-0002-4936-0627 ; 0000-0001-5728-9827 ; 0000-0001-5839-6480 ; 0000-0002-1707-9291</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpce.14376$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpce.14376$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35686437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sabot, Manon E. B.</creatorcontrib><creatorcontrib>De Kauwe, Martin G.</creatorcontrib><creatorcontrib>Pitman, Andy J.</creatorcontrib><creatorcontrib>Ellsworth, David S.</creatorcontrib><creatorcontrib>Medlyn, Belinda E.</creatorcontrib><creatorcontrib>Caldararu, Silvia</creatorcontrib><creatorcontrib>Zaehle, Sönke</creatorcontrib><creatorcontrib>Crous, Kristine Y.</creatorcontrib><creatorcontrib>Gimeno, Teresa E.</creatorcontrib><creatorcontrib>Wujeska‐Klause, Agnieszka</creatorcontrib><creatorcontrib>Mu, Mengyuan</creatorcontrib><creatorcontrib>Yang, Jinyan</creatorcontrib><title>Predicting resilience through the lens of competing adjustments to vegetation function</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>There is a pressing need to better understand ecosystem resilience to droughts and heatwaves. Eco‐evolutionary optimization approaches have been proposed as means to build this understanding in land surface models and improve their predictive capability, but competing approaches are yet to be tested together. Here, we coupled approaches that optimize canopy gas exchange and leaf nitrogen investment, respectively, extending both approaches to account for hydraulic impairment. We assessed model predictions using observations from a native Eucalyptus woodland that experienced repeated droughts and heatwaves between 2013 and 2020, whilst exposed to an elevated [CO2] treatment. Our combined approaches improved predictions of transpiration and enhanced the simulated magnitude of the CO2 fertilization effect on gross primary productivity. The competing approaches also worked consistently along axes of change in soil moisture, leaf area, and [CO2]. Despite predictions of a significant percentage loss of hydraulic conductivity due to embolism (PLC) in 2013, 2014, 2016, and 2017 (99th percentile PLC > 45%), simulated hydraulic legacy effects were small and short‐lived (2 months). Our analysis suggests that leaf shedding and/or suppressed foliage growth formed a strategy to mitigate drought risk. Accounting for foliage responses to water availability has the potential to improve model predictions of ecosystem resilience.</description><subject>Carbon dioxide</subject><subject>Drought</subject><subject>Ecosystem resilience</subject><subject>elevated CO2</subject><subject>Embolism</subject><subject>Environmental risk</subject><subject>Eucalyptus</subject><subject>Fertilization</subject><subject>Foliage</subject><subject>Gas exchange</subject><subject>hydraulic legacies</subject><subject>Hydraulics</subject><subject>land surface models</subject><subject>Leaf area</subject><subject>leaf area index</subject><subject>Leaves</subject><subject>Moisture effects</subject><subject>nitrogen</subject><subject>Optimization</subject><subject>plant optimality</subject><subject>Predictions</subject><subject>Resilience</subject><subject>Soil moisture</subject><subject>Transpiration</subject><subject>vegetation models</subject><subject>Water availability</subject><subject>Woodlands</subject><issn>0140-7791</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kD1PwzAQhi0EoqUw8AeQJRYY0tpxYicjqsqHhEQHYLVc59KmSuxiJ6D-e9ymMCDh5azTc6_uHoQuKRnT8CYbDWOaMMGP0JAynkaMJOQYDQlNSCRETgfozPs1IaEh8lM0YCnPeBgYove5g6LSbWWW2IGv6gqMBtyunO2Wq1AB12A8tiXWttnAHlTFuvNtA6b1uLX4E5bQqrayBped0bvPOTopVe3h4lBH6O1-9jp9jJ5fHp6md8-RZlnGoxQYhyIvtSYLlbGkIEDSuFCxFjRXkOo8o4zCgiVh8XBUqqhScSYEkAwop2yEbvrcjbMfHfhWNpXXUNfKgO28jLlIOWEJjwN6_Qdd286ZsJ2MRTCTc76nbntKO-u9g1JuXNUot5WUyJ1sGWTLvezAXh0Su0UDxS_5YzcAkx74qmrY_p8k59NZH_kNYK2Idw</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Sabot, Manon E. B.</creator><creator>De Kauwe, Martin G.</creator><creator>Pitman, Andy J.</creator><creator>Ellsworth, David S.</creator><creator>Medlyn, Belinda E.</creator><creator>Caldararu, Silvia</creator><creator>Zaehle, Sönke</creator><creator>Crous, Kristine Y.</creator><creator>Gimeno, Teresa E.</creator><creator>Wujeska‐Klause, Agnieszka</creator><creator>Mu, Mengyuan</creator><creator>Yang, Jinyan</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9478-7593</orcidid><orcidid>https://orcid.org/0000-0001-6517-5504</orcidid><orcidid>https://orcid.org/0000-0001-5602-7956</orcidid><orcidid>https://orcid.org/0000-0002-9440-4553</orcidid><orcidid>https://orcid.org/0000-0002-9699-2272</orcidid><orcidid>https://orcid.org/0000-0002-3399-9098</orcidid><orcidid>https://orcid.org/0000-0003-0604-3274</orcidid><orcidid>https://orcid.org/0000-0002-4936-0627</orcidid><orcidid>https://orcid.org/0000-0001-5728-9827</orcidid><orcidid>https://orcid.org/0000-0001-5839-6480</orcidid><orcidid>https://orcid.org/0000-0002-1707-9291</orcidid></search><sort><creationdate>202209</creationdate><title>Predicting resilience through the lens of competing adjustments to vegetation function</title><author>Sabot, Manon E. B. ; De Kauwe, Martin G. ; Pitman, Andy J. ; Ellsworth, David S. ; Medlyn, Belinda E. ; Caldararu, Silvia ; Zaehle, Sönke ; Crous, Kristine Y. ; Gimeno, Teresa E. ; Wujeska‐Klause, Agnieszka ; Mu, Mengyuan ; Yang, Jinyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3886-5e36ed9fcc0ba834d0e052da2c719ae5c98131eb341473045a1aa2877e08e1613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>Drought</topic><topic>Ecosystem resilience</topic><topic>elevated CO2</topic><topic>Embolism</topic><topic>Environmental risk</topic><topic>Eucalyptus</topic><topic>Fertilization</topic><topic>Foliage</topic><topic>Gas exchange</topic><topic>hydraulic legacies</topic><topic>Hydraulics</topic><topic>land surface models</topic><topic>Leaf area</topic><topic>leaf area index</topic><topic>Leaves</topic><topic>Moisture effects</topic><topic>nitrogen</topic><topic>Optimization</topic><topic>plant optimality</topic><topic>Predictions</topic><topic>Resilience</topic><topic>Soil moisture</topic><topic>Transpiration</topic><topic>vegetation models</topic><topic>Water availability</topic><topic>Woodlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabot, Manon E. B.</creatorcontrib><creatorcontrib>De Kauwe, Martin G.</creatorcontrib><creatorcontrib>Pitman, Andy J.</creatorcontrib><creatorcontrib>Ellsworth, David S.</creatorcontrib><creatorcontrib>Medlyn, Belinda E.</creatorcontrib><creatorcontrib>Caldararu, Silvia</creatorcontrib><creatorcontrib>Zaehle, Sönke</creatorcontrib><creatorcontrib>Crous, Kristine Y.</creatorcontrib><creatorcontrib>Gimeno, Teresa E.</creatorcontrib><creatorcontrib>Wujeska‐Klause, Agnieszka</creatorcontrib><creatorcontrib>Mu, Mengyuan</creatorcontrib><creatorcontrib>Yang, Jinyan</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabot, Manon E. B.</au><au>De Kauwe, Martin G.</au><au>Pitman, Andy J.</au><au>Ellsworth, David S.</au><au>Medlyn, Belinda E.</au><au>Caldararu, Silvia</au><au>Zaehle, Sönke</au><au>Crous, Kristine Y.</au><au>Gimeno, Teresa E.</au><au>Wujeska‐Klause, Agnieszka</au><au>Mu, Mengyuan</au><au>Yang, Jinyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting resilience through the lens of competing adjustments to vegetation function</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>2022-09</date><risdate>2022</risdate><volume>45</volume><issue>9</issue><spage>2744</spage><epage>2761</epage><pages>2744-2761</pages><issn>0140-7791</issn><eissn>1365-3040</eissn><abstract>There is a pressing need to better understand ecosystem resilience to droughts and heatwaves. Eco‐evolutionary optimization approaches have been proposed as means to build this understanding in land surface models and improve their predictive capability, but competing approaches are yet to be tested together. Here, we coupled approaches that optimize canopy gas exchange and leaf nitrogen investment, respectively, extending both approaches to account for hydraulic impairment. We assessed model predictions using observations from a native Eucalyptus woodland that experienced repeated droughts and heatwaves between 2013 and 2020, whilst exposed to an elevated [CO2] treatment. Our combined approaches improved predictions of transpiration and enhanced the simulated magnitude of the CO2 fertilization effect on gross primary productivity. The competing approaches also worked consistently along axes of change in soil moisture, leaf area, and [CO2]. Despite predictions of a significant percentage loss of hydraulic conductivity due to embolism (PLC) in 2013, 2014, 2016, and 2017 (99th percentile PLC > 45%), simulated hydraulic legacy effects were small and short‐lived (2 months). Our analysis suggests that leaf shedding and/or suppressed foliage growth formed a strategy to mitigate drought risk. Accounting for foliage responses to water availability has the potential to improve model predictions of ecosystem resilience.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35686437</pmid><doi>10.1111/pce.14376</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9478-7593</orcidid><orcidid>https://orcid.org/0000-0001-6517-5504</orcidid><orcidid>https://orcid.org/0000-0001-5602-7956</orcidid><orcidid>https://orcid.org/0000-0002-9440-4553</orcidid><orcidid>https://orcid.org/0000-0002-9699-2272</orcidid><orcidid>https://orcid.org/0000-0002-3399-9098</orcidid><orcidid>https://orcid.org/0000-0003-0604-3274</orcidid><orcidid>https://orcid.org/0000-0002-4936-0627</orcidid><orcidid>https://orcid.org/0000-0001-5728-9827</orcidid><orcidid>https://orcid.org/0000-0001-5839-6480</orcidid><orcidid>https://orcid.org/0000-0002-1707-9291</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-7791 |
ispartof | Plant, cell and environment, 2022-09, Vol.45 (9), p.2744-2761 |
issn | 0140-7791 1365-3040 |
language | eng |
recordid | cdi_proquest_miscellaneous_2675603462 |
source | Access via Wiley Online Library |
subjects | Carbon dioxide Drought Ecosystem resilience elevated CO2 Embolism Environmental risk Eucalyptus Fertilization Foliage Gas exchange hydraulic legacies Hydraulics land surface models Leaf area leaf area index Leaves Moisture effects nitrogen Optimization plant optimality Predictions Resilience Soil moisture Transpiration vegetation models Water availability Woodlands |
title | Predicting resilience through the lens of competing adjustments to vegetation function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T20%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20resilience%20through%20the%20lens%20of%20competing%20adjustments%20to%20vegetation%20function&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Sabot,%20Manon%20E.%20B.&rft.date=2022-09&rft.volume=45&rft.issue=9&rft.spage=2744&rft.epage=2761&rft.pages=2744-2761&rft.issn=0140-7791&rft.eissn=1365-3040&rft_id=info:doi/10.1111/pce.14376&rft_dat=%3Cproquest_cross%3E2675603462%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700196662&rft_id=info:pmid/35686437&rfr_iscdi=true |