Improving retention-time prediction in supercritical-fluid chromatography by multivariate modelling

•Density or pressure are important for accurate retention modelling in SFC.•Multivariate retention modelling was performed to describe retention in SFC.•Retention time predictions improved by the addition of a pressure or density term.•The use of density improves retention modelling compared to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chromatography A 2022-04, Vol.1668, p.462909, Article 462909
Hauptverfasser: Molenaar, Stef R.A., Savova, Mariyana V., Cross, Rebecca, Ferguson, Paul D., Schoenmakers, Peter J., Pirok, Bob W.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 462909
container_title Journal of Chromatography A
container_volume 1668
creator Molenaar, Stef R.A.
Savova, Mariyana V.
Cross, Rebecca
Ferguson, Paul D.
Schoenmakers, Peter J.
Pirok, Bob W.J.
description •Density or pressure are important for accurate retention modelling in SFC.•Multivariate retention modelling was performed to describe retention in SFC.•Retention time predictions improved by the addition of a pressure or density term.•The use of density improves retention modelling compared to the use of pressure. The prediction of chromatographic retention under supercritical-fluid chromatography (SFC) conditions was studied, using established and novel theoretical models over ranges of modifier content, pressure and temperature. Whereas retention models used for liquid chromatography often only consider the modifier fraction, retention in SFC depends much more strongly on pressure and temperature. The viability of combining several retention models into surfaces that describe the effects of both modifier fraction and pressure was investigated. The ability of commonly used retention models to describe retention as a function of modifier fraction, expressed either as mass or volume fraction, pressure and density was assessed. Using the multivariate surfaces, retention-time prediction for isocratic separations at constant temperature improved significantly compared to univariate modelling when both pressure and modifier fractions were changed. The “mixed-mode” model with an additional exponential pressure or density parameter was able to predict retention times within 5%, with the majority of the predictions within 2%. The use of mass fraction and density further improves retention modelling compared to volume fraction and pressure. These variables however, do require extra computations.
doi_str_mv 10.1016/j.chroma.2022.462909
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2675566216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021967322001078</els_id><sourcerecordid>2675566216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-513c4298e1728304e678dad8df6a0543bd3076e400420e272f1b7b0e040ca953</originalsourceid><addsrcrecordid>eNp9kEtLxTAQhYMoen38A5Eu3fQ6eTRpN4KILxDcuA9pMtVc-jJJL9x_by9Vl66GgXPmzPkIuaSwpkDlzWZtP8PQmTUDxtZCsgqqA7KipeI5V6o8JCsARvNKKn5CTmPcAFAFih2TE14wUZSqXBH70o1h2Pr-IwuYsE9-6PPkO8zGgM7b_Z75PovTiMEGn7w1bd60k3fZkp-Gj2DGz11W77JuapPfmuBNwqwbHLbtfPmcHDWmjXjxM8_I--PD-_1z_vr29HJ_95pbIWjKC8qtYFWJVLGSg0CpSmdc6RppoBC8dhyURAEgGCBTrKG1qgFBgDVVwc_I9XJ2LvQ1YUy689HOL5gehylqJlVRSMmonKVikdowxBiw0WPwnQk7TUHv6eqNXtrpPV290J1tVz8JU92h-zP94pwFt4sA55pbj0FH67G3M8mANmk3-P8TvgFZ-I62</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675566216</pqid></control><display><type>article</type><title>Improving retention-time prediction in supercritical-fluid chromatography by multivariate modelling</title><source>Elsevier ScienceDirect Journals</source><creator>Molenaar, Stef R.A. ; Savova, Mariyana V. ; Cross, Rebecca ; Ferguson, Paul D. ; Schoenmakers, Peter J. ; Pirok, Bob W.J.</creator><creatorcontrib>Molenaar, Stef R.A. ; Savova, Mariyana V. ; Cross, Rebecca ; Ferguson, Paul D. ; Schoenmakers, Peter J. ; Pirok, Bob W.J.</creatorcontrib><description>•Density or pressure are important for accurate retention modelling in SFC.•Multivariate retention modelling was performed to describe retention in SFC.•Retention time predictions improved by the addition of a pressure or density term.•The use of density improves retention modelling compared to the use of pressure. The prediction of chromatographic retention under supercritical-fluid chromatography (SFC) conditions was studied, using established and novel theoretical models over ranges of modifier content, pressure and temperature. Whereas retention models used for liquid chromatography often only consider the modifier fraction, retention in SFC depends much more strongly on pressure and temperature. The viability of combining several retention models into surfaces that describe the effects of both modifier fraction and pressure was investigated. The ability of commonly used retention models to describe retention as a function of modifier fraction, expressed either as mass or volume fraction, pressure and density was assessed. Using the multivariate surfaces, retention-time prediction for isocratic separations at constant temperature improved significantly compared to univariate modelling when both pressure and modifier fractions were changed. The “mixed-mode” model with an additional exponential pressure or density parameter was able to predict retention times within 5%, with the majority of the predictions within 2%. The use of mass fraction and density further improves retention modelling compared to volume fraction and pressure. These variables however, do require extra computations.</description><identifier>ISSN: 0021-9673</identifier><identifier>EISSN: 1873-3778</identifier><identifier>DOI: 10.1016/j.chroma.2022.462909</identifier><identifier>PMID: 35245878</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>liquid chromatography ; Mass fraction ; Multivariate ; prediction ; Pressure ; Retention modelling ; SFC ; temperature ; viability</subject><ispartof>Journal of Chromatography A, 2022-04, Vol.1668, p.462909, Article 462909</ispartof><rights>2022</rights><rights>Copyright © 2022. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-513c4298e1728304e678dad8df6a0543bd3076e400420e272f1b7b0e040ca953</citedby><cites>FETCH-LOGICAL-c441t-513c4298e1728304e678dad8df6a0543bd3076e400420e272f1b7b0e040ca953</cites><orcidid>0000-0002-4142-7233 ; 0000-0002-4558-3778 ; 0000-0002-3294-9750 ; 0000-0001-9098-8056 ; 0000-0001-6840-6056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021967322001078$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35245878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Molenaar, Stef R.A.</creatorcontrib><creatorcontrib>Savova, Mariyana V.</creatorcontrib><creatorcontrib>Cross, Rebecca</creatorcontrib><creatorcontrib>Ferguson, Paul D.</creatorcontrib><creatorcontrib>Schoenmakers, Peter J.</creatorcontrib><creatorcontrib>Pirok, Bob W.J.</creatorcontrib><title>Improving retention-time prediction in supercritical-fluid chromatography by multivariate modelling</title><title>Journal of Chromatography A</title><addtitle>J Chromatogr A</addtitle><description>•Density or pressure are important for accurate retention modelling in SFC.•Multivariate retention modelling was performed to describe retention in SFC.•Retention time predictions improved by the addition of a pressure or density term.•The use of density improves retention modelling compared to the use of pressure. The prediction of chromatographic retention under supercritical-fluid chromatography (SFC) conditions was studied, using established and novel theoretical models over ranges of modifier content, pressure and temperature. Whereas retention models used for liquid chromatography often only consider the modifier fraction, retention in SFC depends much more strongly on pressure and temperature. The viability of combining several retention models into surfaces that describe the effects of both modifier fraction and pressure was investigated. The ability of commonly used retention models to describe retention as a function of modifier fraction, expressed either as mass or volume fraction, pressure and density was assessed. Using the multivariate surfaces, retention-time prediction for isocratic separations at constant temperature improved significantly compared to univariate modelling when both pressure and modifier fractions were changed. The “mixed-mode” model with an additional exponential pressure or density parameter was able to predict retention times within 5%, with the majority of the predictions within 2%. The use of mass fraction and density further improves retention modelling compared to volume fraction and pressure. These variables however, do require extra computations.</description><subject>liquid chromatography</subject><subject>Mass fraction</subject><subject>Multivariate</subject><subject>prediction</subject><subject>Pressure</subject><subject>Retention modelling</subject><subject>SFC</subject><subject>temperature</subject><subject>viability</subject><issn>0021-9673</issn><issn>1873-3778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxTAQhYMoen38A5Eu3fQ6eTRpN4KILxDcuA9pMtVc-jJJL9x_by9Vl66GgXPmzPkIuaSwpkDlzWZtP8PQmTUDxtZCsgqqA7KipeI5V6o8JCsARvNKKn5CTmPcAFAFih2TE14wUZSqXBH70o1h2Pr-IwuYsE9-6PPkO8zGgM7b_Z75PovTiMEGn7w1bd60k3fZkp-Gj2DGz11W77JuapPfmuBNwqwbHLbtfPmcHDWmjXjxM8_I--PD-_1z_vr29HJ_95pbIWjKC8qtYFWJVLGSg0CpSmdc6RppoBC8dhyURAEgGCBTrKG1qgFBgDVVwc_I9XJ2LvQ1YUy689HOL5gehylqJlVRSMmonKVikdowxBiw0WPwnQk7TUHv6eqNXtrpPV290J1tVz8JU92h-zP94pwFt4sA55pbj0FH67G3M8mANmk3-P8TvgFZ-I62</recordid><startdate>20220412</startdate><enddate>20220412</enddate><creator>Molenaar, Stef R.A.</creator><creator>Savova, Mariyana V.</creator><creator>Cross, Rebecca</creator><creator>Ferguson, Paul D.</creator><creator>Schoenmakers, Peter J.</creator><creator>Pirok, Bob W.J.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-4142-7233</orcidid><orcidid>https://orcid.org/0000-0002-4558-3778</orcidid><orcidid>https://orcid.org/0000-0002-3294-9750</orcidid><orcidid>https://orcid.org/0000-0001-9098-8056</orcidid><orcidid>https://orcid.org/0000-0001-6840-6056</orcidid></search><sort><creationdate>20220412</creationdate><title>Improving retention-time prediction in supercritical-fluid chromatography by multivariate modelling</title><author>Molenaar, Stef R.A. ; Savova, Mariyana V. ; Cross, Rebecca ; Ferguson, Paul D. ; Schoenmakers, Peter J. ; Pirok, Bob W.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-513c4298e1728304e678dad8df6a0543bd3076e400420e272f1b7b0e040ca953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>liquid chromatography</topic><topic>Mass fraction</topic><topic>Multivariate</topic><topic>prediction</topic><topic>Pressure</topic><topic>Retention modelling</topic><topic>SFC</topic><topic>temperature</topic><topic>viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molenaar, Stef R.A.</creatorcontrib><creatorcontrib>Savova, Mariyana V.</creatorcontrib><creatorcontrib>Cross, Rebecca</creatorcontrib><creatorcontrib>Ferguson, Paul D.</creatorcontrib><creatorcontrib>Schoenmakers, Peter J.</creatorcontrib><creatorcontrib>Pirok, Bob W.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of Chromatography A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molenaar, Stef R.A.</au><au>Savova, Mariyana V.</au><au>Cross, Rebecca</au><au>Ferguson, Paul D.</au><au>Schoenmakers, Peter J.</au><au>Pirok, Bob W.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving retention-time prediction in supercritical-fluid chromatography by multivariate modelling</atitle><jtitle>Journal of Chromatography A</jtitle><addtitle>J Chromatogr A</addtitle><date>2022-04-12</date><risdate>2022</risdate><volume>1668</volume><spage>462909</spage><pages>462909-</pages><artnum>462909</artnum><issn>0021-9673</issn><eissn>1873-3778</eissn><abstract>•Density or pressure are important for accurate retention modelling in SFC.•Multivariate retention modelling was performed to describe retention in SFC.•Retention time predictions improved by the addition of a pressure or density term.•The use of density improves retention modelling compared to the use of pressure. The prediction of chromatographic retention under supercritical-fluid chromatography (SFC) conditions was studied, using established and novel theoretical models over ranges of modifier content, pressure and temperature. Whereas retention models used for liquid chromatography often only consider the modifier fraction, retention in SFC depends much more strongly on pressure and temperature. The viability of combining several retention models into surfaces that describe the effects of both modifier fraction and pressure was investigated. The ability of commonly used retention models to describe retention as a function of modifier fraction, expressed either as mass or volume fraction, pressure and density was assessed. Using the multivariate surfaces, retention-time prediction for isocratic separations at constant temperature improved significantly compared to univariate modelling when both pressure and modifier fractions were changed. The “mixed-mode” model with an additional exponential pressure or density parameter was able to predict retention times within 5%, with the majority of the predictions within 2%. The use of mass fraction and density further improves retention modelling compared to volume fraction and pressure. These variables however, do require extra computations.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>35245878</pmid><doi>10.1016/j.chroma.2022.462909</doi><orcidid>https://orcid.org/0000-0002-4142-7233</orcidid><orcidid>https://orcid.org/0000-0002-4558-3778</orcidid><orcidid>https://orcid.org/0000-0002-3294-9750</orcidid><orcidid>https://orcid.org/0000-0001-9098-8056</orcidid><orcidid>https://orcid.org/0000-0001-6840-6056</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9673
ispartof Journal of Chromatography A, 2022-04, Vol.1668, p.462909, Article 462909
issn 0021-9673
1873-3778
language eng
recordid cdi_proquest_miscellaneous_2675566216
source Elsevier ScienceDirect Journals
subjects liquid chromatography
Mass fraction
Multivariate
prediction
Pressure
Retention modelling
SFC
temperature
viability
title Improving retention-time prediction in supercritical-fluid chromatography by multivariate modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20retention-time%20prediction%20in%20supercritical-fluid%20chromatography%20by%20multivariate%20modelling&rft.jtitle=Journal%20of%20Chromatography%20A&rft.au=Molenaar,%20Stef%20R.A.&rft.date=2022-04-12&rft.volume=1668&rft.spage=462909&rft.pages=462909-&rft.artnum=462909&rft.issn=0021-9673&rft.eissn=1873-3778&rft_id=info:doi/10.1016/j.chroma.2022.462909&rft_dat=%3Cproquest_cross%3E2675566216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675566216&rft_id=info:pmid/35245878&rft_els_id=S0021967322001078&rfr_iscdi=true