An indium-induced-synthesis In₀.₁₇Ru₀.₈₃O₂ nanoribbon as highly active electrocatalyst for oxygen evolution in acidic media at high current densities above 400 mA cm

Ruthenium dioxide-based electrocatalysts show the most potential in the acidic oxygen evolution reaction (OER). However, most of them show low current density, low mass activity and unsatisfactory stability under strong acidic and oxidative conditions. Herein, an indium-induced-synthesis InₓRuyO₂ na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-02, Vol.10 (7 p.3722-3731), p.3722-3731
Hauptverfasser: Chen, Shi, Wang, Changlai, Gao, Feiyue, Yangyang, Huang, Minxue, Tong, Huigang, Cheng, Zhiyu, Wang, Pengcheng, Wang, Peichen, Tu, Jinwei, Zeng, Xuehao, Chen, Qianwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3731
container_issue 7 p.3722-3731
container_start_page 3722
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 10
creator Chen, Shi
Wang, Changlai
Gao, Feiyue
Yangyang
Huang, Minxue
Tong, Huigang
Cheng, Zhiyu
Wang, Pengcheng
Wang, Peichen
Tu, Jinwei
Zeng, Xuehao
Chen, Qianwang
description Ruthenium dioxide-based electrocatalysts show the most potential in the acidic oxygen evolution reaction (OER). However, most of them show low current density, low mass activity and unsatisfactory stability under strong acidic and oxidative conditions. Herein, an indium-induced-synthesis InₓRuyO₂ nanoribbon electrocatalyst (named In₀.₁₇Ru₀.₈₃O₂-350) was prepared, which achieves an overpotential of 177 mV at a current density of 10 mA cm⁻² in 0.5 mol L⁻¹ sulfuric acid. The mass activity is up to 1094.90 A gRᵤ⁻¹ at an overpotential of 300 mV, which is among the highest for ruthenium dioxide-based catalysts. Moreover, the catalyst displays a current density up to 400 mA cm⁻², which is the highest current density in a small electrode system reported so far. It is found that indium doping can shift down the d-band center of Ru and reduce its work function, which can boost the electron transfer capacity between the catalyst surface and the reactants. Finite-element method simulations further demonstrate that the nanoribbon structure can not only expose more active sites to improve the mass activity of ruthenium and reaction current density, but also enhance the surface electric field intensity to boost the adsorption capacity of water molecules and the capacity of electron transfer, thereby accelerating the dynamics of OER.
doi_str_mv 10.1039/d1ta10022j
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2675560937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675560937</sourcerecordid><originalsourceid>FETCH-LOGICAL-p118t-68adea37479cb05ebe0b43f322c008989c05040b360cbb8cae839286ce4f63db3</originalsourceid><addsrcrecordid>eNotkLtOw0AQRV2ARBTS8AVT0jisvX5tGUU8IkWKhKCO9jFONrJ3g3cdkQ5MAf_DH_lLMIRpzhRXZzQ3CK4iMo0IZTcq8jwiJI53Z8EoJikJ84RlF8HEuR0ZpiAkY2wUfM8MaKN0W4cDWokqdEfjt-i0g4Xpu7dp37333edje9q_-u5j1XcdGG5so4WwBriDrd5sqyNw6fUBASuUvrGSe14dnYfSNmBfjxs0gAdbtV7b37NDXCstoUalOXD_ZwHZNg0aDwqN016jAy7sIE0IgXoGsr4MzkteOZz8cxw8390-zR_C5ep-MZ8tw30UFT7MCq6Q0zzJmRQkRYFEJLSkcSyH_1nB5FBLQgTNiBSikBwLyuIik5iUGVWCjoPrk3ff2JcWnV_X2kmsKm7Qtm4dZ3maZoTRnP4A4IZ7IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675560937</pqid></control><display><type>article</type><title>An indium-induced-synthesis In₀.₁₇Ru₀.₈₃O₂ nanoribbon as highly active electrocatalyst for oxygen evolution in acidic media at high current densities above 400 mA cm</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chen, Shi ; Wang, Changlai ; Gao, Feiyue ; Yangyang ; Huang, Minxue ; Tong, Huigang ; Cheng, Zhiyu ; Wang, Pengcheng ; Wang, Peichen ; Tu, Jinwei ; Zeng, Xuehao ; Chen, Qianwang</creator><creatorcontrib>Chen, Shi ; Wang, Changlai ; Gao, Feiyue ; Yangyang ; Huang, Minxue ; Tong, Huigang ; Cheng, Zhiyu ; Wang, Pengcheng ; Wang, Peichen ; Tu, Jinwei ; Zeng, Xuehao ; Chen, Qianwang</creatorcontrib><description>Ruthenium dioxide-based electrocatalysts show the most potential in the acidic oxygen evolution reaction (OER). However, most of them show low current density, low mass activity and unsatisfactory stability under strong acidic and oxidative conditions. Herein, an indium-induced-synthesis InₓRuyO₂ nanoribbon electrocatalyst (named In₀.₁₇Ru₀.₈₃O₂-350) was prepared, which achieves an overpotential of 177 mV at a current density of 10 mA cm⁻² in 0.5 mol L⁻¹ sulfuric acid. The mass activity is up to 1094.90 A gRᵤ⁻¹ at an overpotential of 300 mV, which is among the highest for ruthenium dioxide-based catalysts. Moreover, the catalyst displays a current density up to 400 mA cm⁻², which is the highest current density in a small electrode system reported so far. It is found that indium doping can shift down the d-band center of Ru and reduce its work function, which can boost the electron transfer capacity between the catalyst surface and the reactants. Finite-element method simulations further demonstrate that the nanoribbon structure can not only expose more active sites to improve the mass activity of ruthenium and reaction current density, but also enhance the surface electric field intensity to boost the adsorption capacity of water molecules and the capacity of electron transfer, thereby accelerating the dynamics of OER.</description><identifier>ISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta10022j</identifier><language>eng</language><subject>adsorption ; catalysts ; electric field ; electrodes ; electron transfer ; indium ; oxygen production ; ruthenium ; sulfuric acid</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-02, Vol.10 (7 p.3722-3731), p.3722-3731</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Wang, Changlai</creatorcontrib><creatorcontrib>Gao, Feiyue</creatorcontrib><creatorcontrib>Yangyang</creatorcontrib><creatorcontrib>Huang, Minxue</creatorcontrib><creatorcontrib>Tong, Huigang</creatorcontrib><creatorcontrib>Cheng, Zhiyu</creatorcontrib><creatorcontrib>Wang, Pengcheng</creatorcontrib><creatorcontrib>Wang, Peichen</creatorcontrib><creatorcontrib>Tu, Jinwei</creatorcontrib><creatorcontrib>Zeng, Xuehao</creatorcontrib><creatorcontrib>Chen, Qianwang</creatorcontrib><title>An indium-induced-synthesis In₀.₁₇Ru₀.₈₃O₂ nanoribbon as highly active electrocatalyst for oxygen evolution in acidic media at high current densities above 400 mA cm</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Ruthenium dioxide-based electrocatalysts show the most potential in the acidic oxygen evolution reaction (OER). However, most of them show low current density, low mass activity and unsatisfactory stability under strong acidic and oxidative conditions. Herein, an indium-induced-synthesis InₓRuyO₂ nanoribbon electrocatalyst (named In₀.₁₇Ru₀.₈₃O₂-350) was prepared, which achieves an overpotential of 177 mV at a current density of 10 mA cm⁻² in 0.5 mol L⁻¹ sulfuric acid. The mass activity is up to 1094.90 A gRᵤ⁻¹ at an overpotential of 300 mV, which is among the highest for ruthenium dioxide-based catalysts. Moreover, the catalyst displays a current density up to 400 mA cm⁻², which is the highest current density in a small electrode system reported so far. It is found that indium doping can shift down the d-band center of Ru and reduce its work function, which can boost the electron transfer capacity between the catalyst surface and the reactants. Finite-element method simulations further demonstrate that the nanoribbon structure can not only expose more active sites to improve the mass activity of ruthenium and reaction current density, but also enhance the surface electric field intensity to boost the adsorption capacity of water molecules and the capacity of electron transfer, thereby accelerating the dynamics of OER.</description><subject>adsorption</subject><subject>catalysts</subject><subject>electric field</subject><subject>electrodes</subject><subject>electron transfer</subject><subject>indium</subject><subject>oxygen production</subject><subject>ruthenium</subject><subject>sulfuric acid</subject><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkLtOw0AQRV2ARBTS8AVT0jisvX5tGUU8IkWKhKCO9jFONrJ3g3cdkQ5MAf_DH_lLMIRpzhRXZzQ3CK4iMo0IZTcq8jwiJI53Z8EoJikJ84RlF8HEuR0ZpiAkY2wUfM8MaKN0W4cDWokqdEfjt-i0g4Xpu7dp37333edje9q_-u5j1XcdGG5so4WwBriDrd5sqyNw6fUBASuUvrGSe14dnYfSNmBfjxs0gAdbtV7b37NDXCstoUalOXD_ZwHZNg0aDwqN016jAy7sIE0IgXoGsr4MzkteOZz8cxw8390-zR_C5ep-MZ8tw30UFT7MCq6Q0zzJmRQkRYFEJLSkcSyH_1nB5FBLQgTNiBSikBwLyuIik5iUGVWCjoPrk3ff2JcWnV_X2kmsKm7Qtm4dZ3maZoTRnP4A4IZ7IQ</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Chen, Shi</creator><creator>Wang, Changlai</creator><creator>Gao, Feiyue</creator><creator>Yangyang</creator><creator>Huang, Minxue</creator><creator>Tong, Huigang</creator><creator>Cheng, Zhiyu</creator><creator>Wang, Pengcheng</creator><creator>Wang, Peichen</creator><creator>Tu, Jinwei</creator><creator>Zeng, Xuehao</creator><creator>Chen, Qianwang</creator><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20220215</creationdate><title>An indium-induced-synthesis In₀.₁₇Ru₀.₈₃O₂ nanoribbon as highly active electrocatalyst for oxygen evolution in acidic media at high current densities above 400 mA cm</title><author>Chen, Shi ; Wang, Changlai ; Gao, Feiyue ; Yangyang ; Huang, Minxue ; Tong, Huigang ; Cheng, Zhiyu ; Wang, Pengcheng ; Wang, Peichen ; Tu, Jinwei ; Zeng, Xuehao ; Chen, Qianwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p118t-68adea37479cb05ebe0b43f322c008989c05040b360cbb8cae839286ce4f63db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>adsorption</topic><topic>catalysts</topic><topic>electric field</topic><topic>electrodes</topic><topic>electron transfer</topic><topic>indium</topic><topic>oxygen production</topic><topic>ruthenium</topic><topic>sulfuric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Wang, Changlai</creatorcontrib><creatorcontrib>Gao, Feiyue</creatorcontrib><creatorcontrib>Yangyang</creatorcontrib><creatorcontrib>Huang, Minxue</creatorcontrib><creatorcontrib>Tong, Huigang</creatorcontrib><creatorcontrib>Cheng, Zhiyu</creatorcontrib><creatorcontrib>Wang, Pengcheng</creatorcontrib><creatorcontrib>Wang, Peichen</creatorcontrib><creatorcontrib>Tu, Jinwei</creatorcontrib><creatorcontrib>Zeng, Xuehao</creatorcontrib><creatorcontrib>Chen, Qianwang</creatorcontrib><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shi</au><au>Wang, Changlai</au><au>Gao, Feiyue</au><au>Yangyang</au><au>Huang, Minxue</au><au>Tong, Huigang</au><au>Cheng, Zhiyu</au><au>Wang, Pengcheng</au><au>Wang, Peichen</au><au>Tu, Jinwei</au><au>Zeng, Xuehao</au><au>Chen, Qianwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An indium-induced-synthesis In₀.₁₇Ru₀.₈₃O₂ nanoribbon as highly active electrocatalyst for oxygen evolution in acidic media at high current densities above 400 mA cm</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>10</volume><issue>7 p.3722-3731</issue><spage>3722</spage><epage>3731</epage><pages>3722-3731</pages><issn>2050-7496</issn><abstract>Ruthenium dioxide-based electrocatalysts show the most potential in the acidic oxygen evolution reaction (OER). However, most of them show low current density, low mass activity and unsatisfactory stability under strong acidic and oxidative conditions. Herein, an indium-induced-synthesis InₓRuyO₂ nanoribbon electrocatalyst (named In₀.₁₇Ru₀.₈₃O₂-350) was prepared, which achieves an overpotential of 177 mV at a current density of 10 mA cm⁻² in 0.5 mol L⁻¹ sulfuric acid. The mass activity is up to 1094.90 A gRᵤ⁻¹ at an overpotential of 300 mV, which is among the highest for ruthenium dioxide-based catalysts. Moreover, the catalyst displays a current density up to 400 mA cm⁻², which is the highest current density in a small electrode system reported so far. It is found that indium doping can shift down the d-band center of Ru and reduce its work function, which can boost the electron transfer capacity between the catalyst surface and the reactants. Finite-element method simulations further demonstrate that the nanoribbon structure can not only expose more active sites to improve the mass activity of ruthenium and reaction current density, but also enhance the surface electric field intensity to boost the adsorption capacity of water molecules and the capacity of electron transfer, thereby accelerating the dynamics of OER.</abstract><doi>10.1039/d1ta10022j</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7496
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2022-02, Vol.10 (7 p.3722-3731), p.3722-3731
issn 2050-7496
language eng
recordid cdi_proquest_miscellaneous_2675560937
source Royal Society Of Chemistry Journals 2008-
subjects adsorption
catalysts
electric field
electrodes
electron transfer
indium
oxygen production
ruthenium
sulfuric acid
title An indium-induced-synthesis In₀.₁₇Ru₀.₈₃O₂ nanoribbon as highly active electrocatalyst for oxygen evolution in acidic media at high current densities above 400 mA cm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A46%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20indium-induced-synthesis%20In%E2%82%80.%E2%82%81%E2%82%87Ru%E2%82%80.%E2%82%88%E2%82%83O%E2%82%82%20nanoribbon%20as%20highly%20active%20electrocatalyst%20for%20oxygen%20evolution%20in%20acidic%20media%20at%20high%20current%20densities%20above%20400%20mA%20cm&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Chen,%20Shi&rft.date=2022-02-15&rft.volume=10&rft.issue=7%20p.3722-3731&rft.spage=3722&rft.epage=3731&rft.pages=3722-3731&rft.issn=2050-7496&rft_id=info:doi/10.1039/d1ta10022j&rft_dat=%3Cproquest%3E2675560937%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675560937&rft_id=info:pmid/&rfr_iscdi=true