GMR study leading to sensor fabrication on the Ag–Co system

The Ag–Co system either in multilayer or in granular alloy form exhibits the Giant MagnetoResistance (GMR) effect. By adjusting the modulation parameters an intermediate structure may be formed offering new possibilities for magnetoelectronic applications. This structure resides in the limit between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. A, Physical Physical, 2001-06, Vol.91 (1), p.180-183
Hauptverfasser: Angelakeris, M, Poulopoulos, P, Valassiades, O, Flevaris, N.K, Niarchos, D, Nassiopoulou, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 1
container_start_page 180
container_title Sensors and actuators. A, Physical
container_volume 91
creator Angelakeris, M
Poulopoulos, P
Valassiades, O
Flevaris, N.K
Niarchos, D
Nassiopoulou, A
description The Ag–Co system either in multilayer or in granular alloy form exhibits the Giant MagnetoResistance (GMR) effect. By adjusting the modulation parameters an intermediate structure may be formed offering new possibilities for magnetoelectronic applications. This structure resides in the limit between multilayers and granular alloys and is called granular multilayer. This work deals with the Ag–Co system and involves film growth by e-beam evaporation, structural characterisation by X-ray and TEM facilities together with magnetic (SQUID) and magnetotransport measurements. The dependence of GMR values on the individual layer thickness and on the total film thickness was parameterised and magnetoresistance values of 16% at 300 K and 36% at 30 K were achieved. The outcome of this study is the fabrication of a two-dimension magnetic field sensor consisting of eight specific elements forming a 2×4 array. The sensor is specialised in small magnetic field regions while its response was found quite satisfactory regarding its uniformity and repeatability. The sensor may be upgraded to larger arrays and to three dimensions in order to fulfil various market needs.
doi_str_mv 10.1016/S0924-4247(01)00469-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26750132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424701004691</els_id><sourcerecordid>26750132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-e1461a478813aabb9c4b163d2295a8fe93435e9bc94fb5dc0f431a5b7db3f8dd3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKuPIAwIoovRZJLJTBYipWgVKoKXdcjlpEamM5qkQne-g2_okzi10q1w4Gy-__ycD6FDgs8IJvz8EYuC5axg1QkmpxgzLnKyhQakrmhOMRfbaLBBdtFejK8YY0qraoAuJncPWUwLu8waUNa3syx1WYQ2diFzSgdvVPJdm_WTXiAbzb4_v8Y9sYwJ5vtox6kmwsHfHqLn66un8U0-vZ_cjkfT3FDOUw6EcaJYVdeEKqW1MEwTTm1RiFLVDgRltAShjWBOl9ZgxyhRpa6spq62lg7R8fruW-jeFxCTnPtooGlUC90iyoJXJSa06MFyDZrQxRjAybfg5yosJcFyJUv-ypIrExIT-StLkj539FegolGNC6o1Pm7CoiZlyXvqck1B_-uHhyCj8dAasD6ASdJ2_p-eH4wjfcs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26750132</pqid></control><display><type>article</type><title>GMR study leading to sensor fabrication on the Ag–Co system</title><source>Access via ScienceDirect (Elsevier)</source><creator>Angelakeris, M ; Poulopoulos, P ; Valassiades, O ; Flevaris, N.K ; Niarchos, D ; Nassiopoulou, A</creator><creatorcontrib>Angelakeris, M ; Poulopoulos, P ; Valassiades, O ; Flevaris, N.K ; Niarchos, D ; Nassiopoulou, A</creatorcontrib><description>The Ag–Co system either in multilayer or in granular alloy form exhibits the Giant MagnetoResistance (GMR) effect. By adjusting the modulation parameters an intermediate structure may be formed offering new possibilities for magnetoelectronic applications. This structure resides in the limit between multilayers and granular alloys and is called granular multilayer. This work deals with the Ag–Co system and involves film growth by e-beam evaporation, structural characterisation by X-ray and TEM facilities together with magnetic (SQUID) and magnetotransport measurements. The dependence of GMR values on the individual layer thickness and on the total film thickness was parameterised and magnetoresistance values of 16% at 300 K and 36% at 30 K were achieved. The outcome of this study is the fabrication of a two-dimension magnetic field sensor consisting of eight specific elements forming a 2×4 array. The sensor is specialised in small magnetic field regions while its response was found quite satisfactory regarding its uniformity and repeatability. The sensor may be upgraded to larger arrays and to three dimensions in order to fulfil various market needs.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/S0924-4247(01)00469-1</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Ag–Co ; Applied sciences ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electronics ; Exact sciences and technology ; Giant magnetoresistance ; GMR ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Magnetic components, instruments and techniques ; Magnetic multilayers ; Magnetic properties and materials ; Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics ; Magnetotransport phenomena, materials for magnetotransport ; Physics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Sensor</subject><ispartof>Sensors and actuators. A, Physical, 2001-06, Vol.91 (1), p.180-183</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-e1461a478813aabb9c4b163d2295a8fe93435e9bc94fb5dc0f431a5b7db3f8dd3</citedby><cites>FETCH-LOGICAL-c366t-e1461a478813aabb9c4b163d2295a8fe93435e9bc94fb5dc0f431a5b7db3f8dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0924-4247(01)00469-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,3551,23935,23936,25145,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=981556$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Angelakeris, M</creatorcontrib><creatorcontrib>Poulopoulos, P</creatorcontrib><creatorcontrib>Valassiades, O</creatorcontrib><creatorcontrib>Flevaris, N.K</creatorcontrib><creatorcontrib>Niarchos, D</creatorcontrib><creatorcontrib>Nassiopoulou, A</creatorcontrib><title>GMR study leading to sensor fabrication on the Ag–Co system</title><title>Sensors and actuators. A, Physical</title><description>The Ag–Co system either in multilayer or in granular alloy form exhibits the Giant MagnetoResistance (GMR) effect. By adjusting the modulation parameters an intermediate structure may be formed offering new possibilities for magnetoelectronic applications. This structure resides in the limit between multilayers and granular alloys and is called granular multilayer. This work deals with the Ag–Co system and involves film growth by e-beam evaporation, structural characterisation by X-ray and TEM facilities together with magnetic (SQUID) and magnetotransport measurements. The dependence of GMR values on the individual layer thickness and on the total film thickness was parameterised and magnetoresistance values of 16% at 300 K and 36% at 30 K were achieved. The outcome of this study is the fabrication of a two-dimension magnetic field sensor consisting of eight specific elements forming a 2×4 array. The sensor is specialised in small magnetic field regions while its response was found quite satisfactory regarding its uniformity and repeatability. The sensor may be upgraded to larger arrays and to three dimensions in order to fulfil various market needs.</description><subject>Ag–Co</subject><subject>Applied sciences</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Giant magnetoresistance</subject><subject>GMR</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Magnetic components, instruments and techniques</subject><subject>Magnetic multilayers</subject><subject>Magnetic properties and materials</subject><subject>Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics</subject><subject>Magnetotransport phenomena, materials for magnetotransport</subject><subject>Physics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Sensor</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKuPIAwIoovRZJLJTBYipWgVKoKXdcjlpEamM5qkQne-g2_okzi10q1w4Gy-__ycD6FDgs8IJvz8EYuC5axg1QkmpxgzLnKyhQakrmhOMRfbaLBBdtFejK8YY0qraoAuJncPWUwLu8waUNa3syx1WYQ2diFzSgdvVPJdm_WTXiAbzb4_v8Y9sYwJ5vtox6kmwsHfHqLn66un8U0-vZ_cjkfT3FDOUw6EcaJYVdeEKqW1MEwTTm1RiFLVDgRltAShjWBOl9ZgxyhRpa6spq62lg7R8fruW-jeFxCTnPtooGlUC90iyoJXJSa06MFyDZrQxRjAybfg5yosJcFyJUv-ypIrExIT-StLkj539FegolGNC6o1Pm7CoiZlyXvqck1B_-uHhyCj8dAasD6ASdJ2_p-eH4wjfcs</recordid><startdate>20010605</startdate><enddate>20010605</enddate><creator>Angelakeris, M</creator><creator>Poulopoulos, P</creator><creator>Valassiades, O</creator><creator>Flevaris, N.K</creator><creator>Niarchos, D</creator><creator>Nassiopoulou, A</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20010605</creationdate><title>GMR study leading to sensor fabrication on the Ag–Co system</title><author>Angelakeris, M ; Poulopoulos, P ; Valassiades, O ; Flevaris, N.K ; Niarchos, D ; Nassiopoulou, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-e1461a478813aabb9c4b163d2295a8fe93435e9bc94fb5dc0f431a5b7db3f8dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Ag–Co</topic><topic>Applied sciences</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Giant magnetoresistance</topic><topic>GMR</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Magnetic components, instruments and techniques</topic><topic>Magnetic multilayers</topic><topic>Magnetic properties and materials</topic><topic>Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics</topic><topic>Magnetotransport phenomena, materials for magnetotransport</topic><topic>Physics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angelakeris, M</creatorcontrib><creatorcontrib>Poulopoulos, P</creatorcontrib><creatorcontrib>Valassiades, O</creatorcontrib><creatorcontrib>Flevaris, N.K</creatorcontrib><creatorcontrib>Niarchos, D</creatorcontrib><creatorcontrib>Nassiopoulou, A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Sensors and actuators. A, Physical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angelakeris, M</au><au>Poulopoulos, P</au><au>Valassiades, O</au><au>Flevaris, N.K</au><au>Niarchos, D</au><au>Nassiopoulou, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GMR study leading to sensor fabrication on the Ag–Co system</atitle><jtitle>Sensors and actuators. A, Physical</jtitle><date>2001-06-05</date><risdate>2001</risdate><volume>91</volume><issue>1</issue><spage>180</spage><epage>183</epage><pages>180-183</pages><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>The Ag–Co system either in multilayer or in granular alloy form exhibits the Giant MagnetoResistance (GMR) effect. By adjusting the modulation parameters an intermediate structure may be formed offering new possibilities for magnetoelectronic applications. This structure resides in the limit between multilayers and granular alloys and is called granular multilayer. This work deals with the Ag–Co system and involves film growth by e-beam evaporation, structural characterisation by X-ray and TEM facilities together with magnetic (SQUID) and magnetotransport measurements. The dependence of GMR values on the individual layer thickness and on the total film thickness was parameterised and magnetoresistance values of 16% at 300 K and 36% at 30 K were achieved. The outcome of this study is the fabrication of a two-dimension magnetic field sensor consisting of eight specific elements forming a 2×4 array. The sensor is specialised in small magnetic field regions while its response was found quite satisfactory regarding its uniformity and repeatability. The sensor may be upgraded to larger arrays and to three dimensions in order to fulfil various market needs.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/S0924-4247(01)00469-1</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A, Physical, 2001-06, Vol.91 (1), p.180-183
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_miscellaneous_26750132
source Access via ScienceDirect (Elsevier)
subjects Ag–Co
Applied sciences
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electronics
Exact sciences and technology
Giant magnetoresistance
GMR
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Magnetic components, instruments and techniques
Magnetic multilayers
Magnetic properties and materials
Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics
Magnetotransport phenomena, materials for magnetotransport
Physics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Sensor
title GMR study leading to sensor fabrication on the Ag–Co system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GMR%20study%20leading%20to%20sensor%20fabrication%20on%20the%20Ag%E2%80%93Co%20system&rft.jtitle=Sensors%20and%20actuators.%20A,%20Physical&rft.au=Angelakeris,%20M&rft.date=2001-06-05&rft.volume=91&rft.issue=1&rft.spage=180&rft.epage=183&rft.pages=180-183&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/S0924-4247(01)00469-1&rft_dat=%3Cproquest_cross%3E26750132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26750132&rft_id=info:pmid/&rft_els_id=S0924424701004691&rfr_iscdi=true