Flexible conjugate gradients

We analyze the conjugate gradient (CG) method with preconditioning slightly variable from one iteration to the next. To maintain the optimal convergence properties, we consider a variant proposed by Axelsson that performs an explicit orthogonalization of the search directions vectors. For this metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2001, Vol.22 (4), p.1444-1460
1. Verfasser: NOTAY, Yvan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1460
container_issue 4
container_start_page 1444
container_title SIAM journal on scientific computing
container_volume 22
creator NOTAY, Yvan
description We analyze the conjugate gradient (CG) method with preconditioning slightly variable from one iteration to the next. To maintain the optimal convergence properties, we consider a variant proposed by Axelsson that performs an explicit orthogonalization of the search directions vectors. For this method, which we refer to as flexible CG, we develop a theoretical analysis that shows that the convergence rate is essentially independent of the variations in the preconditioner as long as the latter are kept sufficiently small. We further discuss the real convergence rate on the basis of some heuristic arguments supported by numerical experiments. Depending on the eigenvalue distribution corresponding to the fixed reference preconditioner, several situations have to be distinguished. In some cases, the convergence is as fast with truncated versions of the algorithm or even with the standard CG method, whereas quite large variations are allowed without too much penalty. In other cases, the flexible variant effectively outperforms the standard method, while the need for truncation limits the size of the variations that can be reasonably allowed.
doi_str_mv 10.1137/S1064827599362314
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26748519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26748519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-d49a0cfe660796cb0d51b101815c4427f6275c51f3a3bf3b831bcd53aa973c3e3</originalsourceid><addsrcrecordid>eNplkE9LxDAQxYMouK5-AMHDIuKtmsnkT3OUxVVhwYN6DmmaLC3ddk1a0G9vyy4IepqB-b03j0fIJdA7AFT3b0Alz5kSWqNkCPyIzIBqkSnQ6njaJc-m-yk5S6mmFCTXbEauVo3_qorGL1zX1sPG9n6xibasfNunc3ISbJP8xWHOycfq8X35nK1fn16WD-vMIdI-K7m21AUvJVVauoKWAgqgkINwnDMV5PjXCQhosQhY5AiFKwVaqxU69Dgnt3vfXew-B596s62S801jW98NyTCpeC5Aj-D1H7DuhtiO2YxmgKgVVyMEe8jFLqXog9nFamvjtwFqprLMv7JGzc3B2CZnmxBt66r0KwSGImf4Ax1fZnE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921339747</pqid></control><display><type>article</type><title>Flexible conjugate gradients</title><source>SIAM Journals Online</source><creator>NOTAY, Yvan</creator><creatorcontrib>NOTAY, Yvan</creatorcontrib><description>We analyze the conjugate gradient (CG) method with preconditioning slightly variable from one iteration to the next. To maintain the optimal convergence properties, we consider a variant proposed by Axelsson that performs an explicit orthogonalization of the search directions vectors. For this method, which we refer to as flexible CG, we develop a theoretical analysis that shows that the convergence rate is essentially independent of the variations in the preconditioner as long as the latter are kept sufficiently small. We further discuss the real convergence rate on the basis of some heuristic arguments supported by numerical experiments. Depending on the eigenvalue distribution corresponding to the fixed reference preconditioner, several situations have to be distinguished. In some cases, the convergence is as fast with truncated versions of the algorithm or even with the standard CG method, whereas quite large variations are allowed without too much penalty. In other cases, the flexible variant effectively outperforms the standard method, while the need for truncation limits the size of the variations that can be reasonably allowed.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/S1064827599362314</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Acceleration of convergence ; Algorithms ; Eigenvalues ; Exact sciences and technology ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Partial differential equations, boundary value problems ; Sciences and techniques of general use</subject><ispartof>SIAM journal on scientific computing, 2001, Vol.22 (4), p.1444-1460</ispartof><rights>2001 INIST-CNRS</rights><rights>[Copyright] © 2000 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-d49a0cfe660796cb0d51b101815c4427f6275c51f3a3bf3b831bcd53aa973c3e3</citedby><cites>FETCH-LOGICAL-c330t-d49a0cfe660796cb0d51b101815c4427f6275c51f3a3bf3b831bcd53aa973c3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3175,4014,27914,27915,27916</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1123582$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>NOTAY, Yvan</creatorcontrib><title>Flexible conjugate gradients</title><title>SIAM journal on scientific computing</title><description>We analyze the conjugate gradient (CG) method with preconditioning slightly variable from one iteration to the next. To maintain the optimal convergence properties, we consider a variant proposed by Axelsson that performs an explicit orthogonalization of the search directions vectors. For this method, which we refer to as flexible CG, we develop a theoretical analysis that shows that the convergence rate is essentially independent of the variations in the preconditioner as long as the latter are kept sufficiently small. We further discuss the real convergence rate on the basis of some heuristic arguments supported by numerical experiments. Depending on the eigenvalue distribution corresponding to the fixed reference preconditioner, several situations have to be distinguished. In some cases, the convergence is as fast with truncated versions of the algorithm or even with the standard CG method, whereas quite large variations are allowed without too much penalty. In other cases, the flexible variant effectively outperforms the standard method, while the need for truncation limits the size of the variations that can be reasonably allowed.</description><subject>Acceleration of convergence</subject><subject>Algorithms</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Partial differential equations, boundary value problems</subject><subject>Sciences and techniques of general use</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE9LxDAQxYMouK5-AMHDIuKtmsnkT3OUxVVhwYN6DmmaLC3ddk1a0G9vyy4IepqB-b03j0fIJdA7AFT3b0Alz5kSWqNkCPyIzIBqkSnQ6njaJc-m-yk5S6mmFCTXbEauVo3_qorGL1zX1sPG9n6xibasfNunc3ISbJP8xWHOycfq8X35nK1fn16WD-vMIdI-K7m21AUvJVVauoKWAgqgkINwnDMV5PjXCQhosQhY5AiFKwVaqxU69Dgnt3vfXew-B596s62S801jW98NyTCpeC5Aj-D1H7DuhtiO2YxmgKgVVyMEe8jFLqXog9nFamvjtwFqprLMv7JGzc3B2CZnmxBt66r0KwSGImf4Ax1fZnE</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>NOTAY, Yvan</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2001</creationdate><title>Flexible conjugate gradients</title><author>NOTAY, Yvan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-d49a0cfe660796cb0d51b101815c4427f6275c51f3a3bf3b831bcd53aa973c3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Acceleration of convergence</topic><topic>Algorithms</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Partial differential equations, boundary value problems</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NOTAY, Yvan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NOTAY, Yvan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible conjugate gradients</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2001</date><risdate>2001</risdate><volume>22</volume><issue>4</issue><spage>1444</spage><epage>1460</epage><pages>1444-1460</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>We analyze the conjugate gradient (CG) method with preconditioning slightly variable from one iteration to the next. To maintain the optimal convergence properties, we consider a variant proposed by Axelsson that performs an explicit orthogonalization of the search directions vectors. For this method, which we refer to as flexible CG, we develop a theoretical analysis that shows that the convergence rate is essentially independent of the variations in the preconditioner as long as the latter are kept sufficiently small. We further discuss the real convergence rate on the basis of some heuristic arguments supported by numerical experiments. Depending on the eigenvalue distribution corresponding to the fixed reference preconditioner, several situations have to be distinguished. In some cases, the convergence is as fast with truncated versions of the algorithm or even with the standard CG method, whereas quite large variations are allowed without too much penalty. In other cases, the flexible variant effectively outperforms the standard method, while the need for truncation limits the size of the variations that can be reasonably allowed.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S1064827599362314</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2001, Vol.22 (4), p.1444-1460
issn 1064-8275
1095-7197
language eng
recordid cdi_proquest_miscellaneous_26748519
source SIAM Journals Online
subjects Acceleration of convergence
Algorithms
Eigenvalues
Exact sciences and technology
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Partial differential equations, boundary value problems
Sciences and techniques of general use
title Flexible conjugate gradients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A39%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20conjugate%20gradients&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=NOTAY,%20Yvan&rft.date=2001&rft.volume=22&rft.issue=4&rft.spage=1444&rft.epage=1460&rft.pages=1444-1460&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/S1064827599362314&rft_dat=%3Cproquest_cross%3E26748519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921339747&rft_id=info:pmid/&rfr_iscdi=true