Detection and Correction of Delocalization Errors for Electron and Hole Polarons Using Density-Corrected DFT
Modeling polaron defects is an important aspect of computational materials science, but the description of unpaired spins in density functional theory (DFT) often suffers from delocalization error. To diagnose and correct the overdelocalization of spin defects, we report an implementation of density...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2022-06, Vol.13 (23), p.5275-5284 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5284 |
---|---|
container_issue | 23 |
container_start_page | 5275 |
container_title | The journal of physical chemistry letters |
container_volume | 13 |
creator | Rana, Bhaskar Coons, Marc P. Herbert, John M. |
description | Modeling polaron defects is an important aspect of computational materials science, but the description of unpaired spins in density functional theory (DFT) often suffers from delocalization error. To diagnose and correct the overdelocalization of spin defects, we report an implementation of density-corrected (DC-)DFT and its analytic energy gradient. In DC-DFT, an exchange-correlation functional is evaluated using a Hartree–Fock density, thus incorporating electron correlation while avoiding self-interaction error. Results for an electron polaron in models of titania and a hole polaron in Al-doped silica demonstrate that geometry optimization with semilocal functionals drives significant structural distortion, including the elongation of several bonds, such that subsequent single-point calculations with hybrid functionals fail to afford a localized defect even in cases where geometry optimization with the hybrid functional does localize the polaron. This has significant implications for traditional workflows in computational materials science, where semilocal functionals are often used for structure relaxation. DC-DFT calculations provide a mechanism to detect situations where delocalization error is likely to affect the results. |
doi_str_mv | 10.1021/acs.jpclett.2c01187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2674346156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674346156</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2357-86a130910304d7b1e40ee1360ffa7a8f39e432515f16a462da323d15c6c2e28a3</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EoqXwBEgoI0taXztxkhH1hyJVgqGdLde5QancuNjJUJ4e0wbExGT76jufdQ8h90DHQBlMlPbj3UEbbNsx0xQgzy7IEIokjzPI08s_9wG58X5HqShonl2TAU9FlmRQDImZYYu6rW0TqaaMpta5_mmraIbGamXqT3WazJ2zzkeVddHchJTroaU1GL1Zo8LARxtfN-8BbXzdHuO-EMtotljfkqtKGY93_Tkim8V8PV3Gq9fnl-nTKlaMp1mcCwWcFkA5TcpsC5hQROCCVpXKVF7xAhPOUkgrECoRrFSc8RJSLTRDlis-Io_n3oOzHx36Vu5rr9EY1aDtvGRhe54ISEWI8nNUO-u9w0oeXL1X7iiBym_NMmiWvWbZaw7UQ_9Bt91j-cv8eA2ByTlwom3nmrDvv5VfCcSL4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674346156</pqid></control><display><type>article</type><title>Detection and Correction of Delocalization Errors for Electron and Hole Polarons Using Density-Corrected DFT</title><source>American Chemical Society Publications</source><creator>Rana, Bhaskar ; Coons, Marc P. ; Herbert, John M.</creator><creatorcontrib>Rana, Bhaskar ; Coons, Marc P. ; Herbert, John M.</creatorcontrib><description>Modeling polaron defects is an important aspect of computational materials science, but the description of unpaired spins in density functional theory (DFT) often suffers from delocalization error. To diagnose and correct the overdelocalization of spin defects, we report an implementation of density-corrected (DC-)DFT and its analytic energy gradient. In DC-DFT, an exchange-correlation functional is evaluated using a Hartree–Fock density, thus incorporating electron correlation while avoiding self-interaction error. Results for an electron polaron in models of titania and a hole polaron in Al-doped silica demonstrate that geometry optimization with semilocal functionals drives significant structural distortion, including the elongation of several bonds, such that subsequent single-point calculations with hybrid functionals fail to afford a localized defect even in cases where geometry optimization with the hybrid functional does localize the polaron. This has significant implications for traditional workflows in computational materials science, where semilocal functionals are often used for structure relaxation. DC-DFT calculations provide a mechanism to detect situations where delocalization error is likely to affect the results.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.2c01187</identifier><identifier>PMID: 35674719</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Materials and Molecular Properties</subject><ispartof>The journal of physical chemistry letters, 2022-06, Vol.13 (23), p.5275-5284</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2357-86a130910304d7b1e40ee1360ffa7a8f39e432515f16a462da323d15c6c2e28a3</citedby><cites>FETCH-LOGICAL-a2357-86a130910304d7b1e40ee1360ffa7a8f39e432515f16a462da323d15c6c2e28a3</cites><orcidid>0000-0001-9511-2854 ; 0000-0002-8751-7314 ; 0000-0002-1663-2278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.2c01187$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.2c01187$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35674719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rana, Bhaskar</creatorcontrib><creatorcontrib>Coons, Marc P.</creatorcontrib><creatorcontrib>Herbert, John M.</creatorcontrib><title>Detection and Correction of Delocalization Errors for Electron and Hole Polarons Using Density-Corrected DFT</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Modeling polaron defects is an important aspect of computational materials science, but the description of unpaired spins in density functional theory (DFT) often suffers from delocalization error. To diagnose and correct the overdelocalization of spin defects, we report an implementation of density-corrected (DC-)DFT and its analytic energy gradient. In DC-DFT, an exchange-correlation functional is evaluated using a Hartree–Fock density, thus incorporating electron correlation while avoiding self-interaction error. Results for an electron polaron in models of titania and a hole polaron in Al-doped silica demonstrate that geometry optimization with semilocal functionals drives significant structural distortion, including the elongation of several bonds, such that subsequent single-point calculations with hybrid functionals fail to afford a localized defect even in cases where geometry optimization with the hybrid functional does localize the polaron. This has significant implications for traditional workflows in computational materials science, where semilocal functionals are often used for structure relaxation. DC-DFT calculations provide a mechanism to detect situations where delocalization error is likely to affect the results.</description><subject>Physical Insights into Materials and Molecular Properties</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EoqXwBEgoI0taXztxkhH1hyJVgqGdLde5QancuNjJUJ4e0wbExGT76jufdQ8h90DHQBlMlPbj3UEbbNsx0xQgzy7IEIokjzPI08s_9wG58X5HqShonl2TAU9FlmRQDImZYYu6rW0TqaaMpta5_mmraIbGamXqT3WazJ2zzkeVddHchJTroaU1GL1Zo8LARxtfN-8BbXzdHuO-EMtotljfkqtKGY93_Tkim8V8PV3Gq9fnl-nTKlaMp1mcCwWcFkA5TcpsC5hQROCCVpXKVF7xAhPOUkgrECoRrFSc8RJSLTRDlis-Io_n3oOzHx36Vu5rr9EY1aDtvGRhe54ISEWI8nNUO-u9w0oeXL1X7iiBym_NMmiWvWbZaw7UQ_9Bt91j-cv8eA2ByTlwom3nmrDvv5VfCcSL4w</recordid><startdate>20220616</startdate><enddate>20220616</enddate><creator>Rana, Bhaskar</creator><creator>Coons, Marc P.</creator><creator>Herbert, John M.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9511-2854</orcidid><orcidid>https://orcid.org/0000-0002-8751-7314</orcidid><orcidid>https://orcid.org/0000-0002-1663-2278</orcidid></search><sort><creationdate>20220616</creationdate><title>Detection and Correction of Delocalization Errors for Electron and Hole Polarons Using Density-Corrected DFT</title><author>Rana, Bhaskar ; Coons, Marc P. ; Herbert, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2357-86a130910304d7b1e40ee1360ffa7a8f39e432515f16a462da323d15c6c2e28a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Physical Insights into Materials and Molecular Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rana, Bhaskar</creatorcontrib><creatorcontrib>Coons, Marc P.</creatorcontrib><creatorcontrib>Herbert, John M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rana, Bhaskar</au><au>Coons, Marc P.</au><au>Herbert, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and Correction of Delocalization Errors for Electron and Hole Polarons Using Density-Corrected DFT</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2022-06-16</date><risdate>2022</risdate><volume>13</volume><issue>23</issue><spage>5275</spage><epage>5284</epage><pages>5275-5284</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Modeling polaron defects is an important aspect of computational materials science, but the description of unpaired spins in density functional theory (DFT) often suffers from delocalization error. To diagnose and correct the overdelocalization of spin defects, we report an implementation of density-corrected (DC-)DFT and its analytic energy gradient. In DC-DFT, an exchange-correlation functional is evaluated using a Hartree–Fock density, thus incorporating electron correlation while avoiding self-interaction error. Results for an electron polaron in models of titania and a hole polaron in Al-doped silica demonstrate that geometry optimization with semilocal functionals drives significant structural distortion, including the elongation of several bonds, such that subsequent single-point calculations with hybrid functionals fail to afford a localized defect even in cases where geometry optimization with the hybrid functional does localize the polaron. This has significant implications for traditional workflows in computational materials science, where semilocal functionals are often used for structure relaxation. DC-DFT calculations provide a mechanism to detect situations where delocalization error is likely to affect the results.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35674719</pmid><doi>10.1021/acs.jpclett.2c01187</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9511-2854</orcidid><orcidid>https://orcid.org/0000-0002-8751-7314</orcidid><orcidid>https://orcid.org/0000-0002-1663-2278</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2022-06, Vol.13 (23), p.5275-5284 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_proquest_miscellaneous_2674346156 |
source | American Chemical Society Publications |
subjects | Physical Insights into Materials and Molecular Properties |
title | Detection and Correction of Delocalization Errors for Electron and Hole Polarons Using Density-Corrected DFT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20Correction%20of%20Delocalization%20Errors%20for%20Electron%20and%20Hole%20Polarons%20Using%20Density-Corrected%20DFT&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Rana,%20Bhaskar&rft.date=2022-06-16&rft.volume=13&rft.issue=23&rft.spage=5275&rft.epage=5284&rft.pages=5275-5284&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.2c01187&rft_dat=%3Cproquest_cross%3E2674346156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674346156&rft_id=info:pmid/35674719&rfr_iscdi=true |