Detection and Correction of Delocalization Errors for Electron and Hole Polarons Using Density-Corrected DFT

Modeling polaron defects is an important aspect of computational materials science, but the description of unpaired spins in density functional theory (DFT) often suffers from delocalization error. To diagnose and correct the overdelocalization of spin defects, we report an implementation of density...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2022-06, Vol.13 (23), p.5275-5284
Hauptverfasser: Rana, Bhaskar, Coons, Marc P., Herbert, John M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5284
container_issue 23
container_start_page 5275
container_title The journal of physical chemistry letters
container_volume 13
creator Rana, Bhaskar
Coons, Marc P.
Herbert, John M.
description Modeling polaron defects is an important aspect of computational materials science, but the description of unpaired spins in density functional theory (DFT) often suffers from delocalization error. To diagnose and correct the overdelocalization of spin defects, we report an implementation of density-corrected (DC-)­DFT and its analytic energy gradient. In DC-DFT, an exchange-correlation functional is evaluated using a Hartree–Fock density, thus incorporating electron correlation while avoiding self-interaction error. Results for an electron polaron in models of titania and a hole polaron in Al-doped silica demonstrate that geometry optimization with semilocal functionals drives significant structural distortion, including the elongation of several bonds, such that subsequent single-point calculations with hybrid functionals fail to afford a localized defect even in cases where geometry optimization with the hybrid functional does localize the polaron. This has significant implications for traditional workflows in computational materials science, where semilocal functionals are often used for structure relaxation. DC-DFT calculations provide a mechanism to detect situations where delocalization error is likely to affect the results.
doi_str_mv 10.1021/acs.jpclett.2c01187
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2674346156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674346156</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2357-86a130910304d7b1e40ee1360ffa7a8f39e432515f16a462da323d15c6c2e28a3</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EoqXwBEgoI0taXztxkhH1hyJVgqGdLde5QancuNjJUJ4e0wbExGT76jufdQ8h90DHQBlMlPbj3UEbbNsx0xQgzy7IEIokjzPI08s_9wG58X5HqShonl2TAU9FlmRQDImZYYu6rW0TqaaMpta5_mmraIbGamXqT3WazJ2zzkeVddHchJTroaU1GL1Zo8LARxtfN-8BbXzdHuO-EMtotljfkqtKGY93_Tkim8V8PV3Gq9fnl-nTKlaMp1mcCwWcFkA5TcpsC5hQROCCVpXKVF7xAhPOUkgrECoRrFSc8RJSLTRDlis-Io_n3oOzHx36Vu5rr9EY1aDtvGRhe54ISEWI8nNUO-u9w0oeXL1X7iiBym_NMmiWvWbZaw7UQ_9Bt91j-cv8eA2ByTlwom3nmrDvv5VfCcSL4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674346156</pqid></control><display><type>article</type><title>Detection and Correction of Delocalization Errors for Electron and Hole Polarons Using Density-Corrected DFT</title><source>American Chemical Society Publications</source><creator>Rana, Bhaskar ; Coons, Marc P. ; Herbert, John M.</creator><creatorcontrib>Rana, Bhaskar ; Coons, Marc P. ; Herbert, John M.</creatorcontrib><description>Modeling polaron defects is an important aspect of computational materials science, but the description of unpaired spins in density functional theory (DFT) often suffers from delocalization error. To diagnose and correct the overdelocalization of spin defects, we report an implementation of density-corrected (DC-)­DFT and its analytic energy gradient. In DC-DFT, an exchange-correlation functional is evaluated using a Hartree–Fock density, thus incorporating electron correlation while avoiding self-interaction error. Results for an electron polaron in models of titania and a hole polaron in Al-doped silica demonstrate that geometry optimization with semilocal functionals drives significant structural distortion, including the elongation of several bonds, such that subsequent single-point calculations with hybrid functionals fail to afford a localized defect even in cases where geometry optimization with the hybrid functional does localize the polaron. This has significant implications for traditional workflows in computational materials science, where semilocal functionals are often used for structure relaxation. DC-DFT calculations provide a mechanism to detect situations where delocalization error is likely to affect the results.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.2c01187</identifier><identifier>PMID: 35674719</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Materials and Molecular Properties</subject><ispartof>The journal of physical chemistry letters, 2022-06, Vol.13 (23), p.5275-5284</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2357-86a130910304d7b1e40ee1360ffa7a8f39e432515f16a462da323d15c6c2e28a3</citedby><cites>FETCH-LOGICAL-a2357-86a130910304d7b1e40ee1360ffa7a8f39e432515f16a462da323d15c6c2e28a3</cites><orcidid>0000-0001-9511-2854 ; 0000-0002-8751-7314 ; 0000-0002-1663-2278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.2c01187$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.2c01187$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35674719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rana, Bhaskar</creatorcontrib><creatorcontrib>Coons, Marc P.</creatorcontrib><creatorcontrib>Herbert, John M.</creatorcontrib><title>Detection and Correction of Delocalization Errors for Electron and Hole Polarons Using Density-Corrected DFT</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Modeling polaron defects is an important aspect of computational materials science, but the description of unpaired spins in density functional theory (DFT) often suffers from delocalization error. To diagnose and correct the overdelocalization of spin defects, we report an implementation of density-corrected (DC-)­DFT and its analytic energy gradient. In DC-DFT, an exchange-correlation functional is evaluated using a Hartree–Fock density, thus incorporating electron correlation while avoiding self-interaction error. Results for an electron polaron in models of titania and a hole polaron in Al-doped silica demonstrate that geometry optimization with semilocal functionals drives significant structural distortion, including the elongation of several bonds, such that subsequent single-point calculations with hybrid functionals fail to afford a localized defect even in cases where geometry optimization with the hybrid functional does localize the polaron. This has significant implications for traditional workflows in computational materials science, where semilocal functionals are often used for structure relaxation. DC-DFT calculations provide a mechanism to detect situations where delocalization error is likely to affect the results.</description><subject>Physical Insights into Materials and Molecular Properties</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EoqXwBEgoI0taXztxkhH1hyJVgqGdLde5QancuNjJUJ4e0wbExGT76jufdQ8h90DHQBlMlPbj3UEbbNsx0xQgzy7IEIokjzPI08s_9wG58X5HqShonl2TAU9FlmRQDImZYYu6rW0TqaaMpta5_mmraIbGamXqT3WazJ2zzkeVddHchJTroaU1GL1Zo8LARxtfN-8BbXzdHuO-EMtotljfkqtKGY93_Tkim8V8PV3Gq9fnl-nTKlaMp1mcCwWcFkA5TcpsC5hQROCCVpXKVF7xAhPOUkgrECoRrFSc8RJSLTRDlis-Io_n3oOzHx36Vu5rr9EY1aDtvGRhe54ISEWI8nNUO-u9w0oeXL1X7iiBym_NMmiWvWbZaw7UQ_9Bt91j-cv8eA2ByTlwom3nmrDvv5VfCcSL4w</recordid><startdate>20220616</startdate><enddate>20220616</enddate><creator>Rana, Bhaskar</creator><creator>Coons, Marc P.</creator><creator>Herbert, John M.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9511-2854</orcidid><orcidid>https://orcid.org/0000-0002-8751-7314</orcidid><orcidid>https://orcid.org/0000-0002-1663-2278</orcidid></search><sort><creationdate>20220616</creationdate><title>Detection and Correction of Delocalization Errors for Electron and Hole Polarons Using Density-Corrected DFT</title><author>Rana, Bhaskar ; Coons, Marc P. ; Herbert, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2357-86a130910304d7b1e40ee1360ffa7a8f39e432515f16a462da323d15c6c2e28a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Physical Insights into Materials and Molecular Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rana, Bhaskar</creatorcontrib><creatorcontrib>Coons, Marc P.</creatorcontrib><creatorcontrib>Herbert, John M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rana, Bhaskar</au><au>Coons, Marc P.</au><au>Herbert, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and Correction of Delocalization Errors for Electron and Hole Polarons Using Density-Corrected DFT</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2022-06-16</date><risdate>2022</risdate><volume>13</volume><issue>23</issue><spage>5275</spage><epage>5284</epage><pages>5275-5284</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Modeling polaron defects is an important aspect of computational materials science, but the description of unpaired spins in density functional theory (DFT) often suffers from delocalization error. To diagnose and correct the overdelocalization of spin defects, we report an implementation of density-corrected (DC-)­DFT and its analytic energy gradient. In DC-DFT, an exchange-correlation functional is evaluated using a Hartree–Fock density, thus incorporating electron correlation while avoiding self-interaction error. Results for an electron polaron in models of titania and a hole polaron in Al-doped silica demonstrate that geometry optimization with semilocal functionals drives significant structural distortion, including the elongation of several bonds, such that subsequent single-point calculations with hybrid functionals fail to afford a localized defect even in cases where geometry optimization with the hybrid functional does localize the polaron. This has significant implications for traditional workflows in computational materials science, where semilocal functionals are often used for structure relaxation. DC-DFT calculations provide a mechanism to detect situations where delocalization error is likely to affect the results.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35674719</pmid><doi>10.1021/acs.jpclett.2c01187</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9511-2854</orcidid><orcidid>https://orcid.org/0000-0002-8751-7314</orcidid><orcidid>https://orcid.org/0000-0002-1663-2278</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2022-06, Vol.13 (23), p.5275-5284
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2674346156
source American Chemical Society Publications
subjects Physical Insights into Materials and Molecular Properties
title Detection and Correction of Delocalization Errors for Electron and Hole Polarons Using Density-Corrected DFT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A04%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20Correction%20of%20Delocalization%20Errors%20for%20Electron%20and%20Hole%20Polarons%20Using%20Density-Corrected%20DFT&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Rana,%20Bhaskar&rft.date=2022-06-16&rft.volume=13&rft.issue=23&rft.spage=5275&rft.epage=5284&rft.pages=5275-5284&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.2c01187&rft_dat=%3Cproquest_cross%3E2674346156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674346156&rft_id=info:pmid/35674719&rfr_iscdi=true