Functional individual variability development of the neonatal brain

Individual variability in cognition and behavior results from the differences in brain structure and function that have already emerged before birth. However, little is known about individual variability in brain functional architecture at local level in neonates which is of great significance to ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain Structure and Function 2022-07, Vol.227 (6), p.2181-2190
Hauptverfasser: Gao, Wenjian, Huang, Ziyi, Ou, Wenfei, Tang, Xiaoqian, Lv, Wanying, Nie, Jingxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2190
container_issue 6
container_start_page 2181
container_title Brain Structure and Function
container_volume 227
creator Gao, Wenjian
Huang, Ziyi
Ou, Wenfei
Tang, Xiaoqian
Lv, Wanying
Nie, Jingxin
description Individual variability in cognition and behavior results from the differences in brain structure and function that have already emerged before birth. However, little is known about individual variability in brain functional architecture at local level in neonates which is of great significance to explore owing to largely undeveloped long-range functional connectivity and segregated functions in early brain development. To address this, resting-state fMRI data of 163 neonates ranged from 32 to 45 postconceptional weeks (PCW) were used in this study, and various functional features including functional parcellation similarity, local brain activity and local functional connectivity were used to characterize individual functional variability. We observed significantly higher local functional individual variability in superior parietal, sensorimotor, and visual cortex, and lower variability in the frontal, insula and cingulate cortex relative to other regions within each hemisphere. The mean local functional individual variability significantly increased with age, and the age effect was found larger in brain regions such as the occipital, temporal, prefrontal and parietal cortex. Our findings promote the understanding of brain plasticity and regional differential maturation in the early stage.
doi_str_mv 10.1007/s00429-022-02516-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2674001612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2680446048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-5de24d2eea68c8813485c21b58f4b0d38edf4555fc9600544b53415093cd20f83</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlb_gAdZ8OJldfLZ7FGKVaHgRc8hu8lqyn7UZLfQf2_WrRU8eBhmIM_7zuRF6BLDLQaY3wUARrIUCInFsUjlEZpiKWhKhMDHh5nTCToLYQ3AM4mzUzShXAhJiZyixbJvis61ja4S1xi3daaP41Z7p3NXuW6XGLu1VbupbdMlbZl0HzZpbBR0kcu9ds05Oil1FezFvs_Q2_LhdfGUrl4enxf3q7QgXHQpN5YwQ6zVQhZSYsokLwjOuSxZDoZKa0rGOS-LTMRTGcs5ZZhDRgtDoJR0hm5G341vP3sbOlW7UNiq0vGePigi5gwAC0wiev0HXbe9j58cKAmMCWCDIRmpwrcheFuqjXe19juFQQ0RqzFiFSNW3xGrQXS1t-7z2pqD5CfTCNARCPGpebf-d_c_tl9Go4Vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2680446048</pqid></control><display><type>article</type><title>Functional individual variability development of the neonatal brain</title><source>SpringerLink Journals</source><creator>Gao, Wenjian ; Huang, Ziyi ; Ou, Wenfei ; Tang, Xiaoqian ; Lv, Wanying ; Nie, Jingxin</creator><creatorcontrib>Gao, Wenjian ; Huang, Ziyi ; Ou, Wenfei ; Tang, Xiaoqian ; Lv, Wanying ; Nie, Jingxin</creatorcontrib><description>Individual variability in cognition and behavior results from the differences in brain structure and function that have already emerged before birth. However, little is known about individual variability in brain functional architecture at local level in neonates which is of great significance to explore owing to largely undeveloped long-range functional connectivity and segregated functions in early brain development. To address this, resting-state fMRI data of 163 neonates ranged from 32 to 45 postconceptional weeks (PCW) were used in this study, and various functional features including functional parcellation similarity, local brain activity and local functional connectivity were used to characterize individual functional variability. We observed significantly higher local functional individual variability in superior parietal, sensorimotor, and visual cortex, and lower variability in the frontal, insula and cingulate cortex relative to other regions within each hemisphere. The mean local functional individual variability significantly increased with age, and the age effect was found larger in brain regions such as the occipital, temporal, prefrontal and parietal cortex. Our findings promote the understanding of brain plasticity and regional differential maturation in the early stage.</description><identifier>ISSN: 1863-2653</identifier><identifier>EISSN: 1863-2661</identifier><identifier>EISSN: 0340-2061</identifier><identifier>DOI: 10.1007/s00429-022-02516-8</identifier><identifier>PMID: 35668328</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Brain ; Brain architecture ; Brain mapping ; Cell Biology ; Cognition ; Cognition &amp; reasoning ; Cortex (cingulate) ; Cortex (frontal) ; Cortex (parietal) ; Functional anatomy ; Functional magnetic resonance imaging ; Gestational age ; Laboratories ; Neonates ; Neural networks ; Neurology ; Neuroplasticity ; Neurosciences ; Newborn babies ; Original Article ; Prefrontal cortex ; Somatosensory cortex ; Structure-function relationships ; Temporal lobe ; Time series ; Variability ; Visual cortex</subject><ispartof>Brain Structure and Function, 2022-07, Vol.227 (6), p.2181-2190</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c256t-5de24d2eea68c8813485c21b58f4b0d38edf4555fc9600544b53415093cd20f83</cites><orcidid>0000-0002-0237-2559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00429-022-02516-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00429-022-02516-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35668328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Wenjian</creatorcontrib><creatorcontrib>Huang, Ziyi</creatorcontrib><creatorcontrib>Ou, Wenfei</creatorcontrib><creatorcontrib>Tang, Xiaoqian</creatorcontrib><creatorcontrib>Lv, Wanying</creatorcontrib><creatorcontrib>Nie, Jingxin</creatorcontrib><title>Functional individual variability development of the neonatal brain</title><title>Brain Structure and Function</title><addtitle>Brain Struct Funct</addtitle><addtitle>Brain Struct Funct</addtitle><description>Individual variability in cognition and behavior results from the differences in brain structure and function that have already emerged before birth. However, little is known about individual variability in brain functional architecture at local level in neonates which is of great significance to explore owing to largely undeveloped long-range functional connectivity and segregated functions in early brain development. To address this, resting-state fMRI data of 163 neonates ranged from 32 to 45 postconceptional weeks (PCW) were used in this study, and various functional features including functional parcellation similarity, local brain activity and local functional connectivity were used to characterize individual functional variability. We observed significantly higher local functional individual variability in superior parietal, sensorimotor, and visual cortex, and lower variability in the frontal, insula and cingulate cortex relative to other regions within each hemisphere. The mean local functional individual variability significantly increased with age, and the age effect was found larger in brain regions such as the occipital, temporal, prefrontal and parietal cortex. Our findings promote the understanding of brain plasticity and regional differential maturation in the early stage.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Brain architecture</subject><subject>Brain mapping</subject><subject>Cell Biology</subject><subject>Cognition</subject><subject>Cognition &amp; reasoning</subject><subject>Cortex (cingulate)</subject><subject>Cortex (frontal)</subject><subject>Cortex (parietal)</subject><subject>Functional anatomy</subject><subject>Functional magnetic resonance imaging</subject><subject>Gestational age</subject><subject>Laboratories</subject><subject>Neonates</subject><subject>Neural networks</subject><subject>Neurology</subject><subject>Neuroplasticity</subject><subject>Neurosciences</subject><subject>Newborn babies</subject><subject>Original Article</subject><subject>Prefrontal cortex</subject><subject>Somatosensory cortex</subject><subject>Structure-function relationships</subject><subject>Temporal lobe</subject><subject>Time series</subject><subject>Variability</subject><subject>Visual cortex</subject><issn>1863-2653</issn><issn>1863-2661</issn><issn>0340-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMotlb_gAdZ8OJldfLZ7FGKVaHgRc8hu8lqyn7UZLfQf2_WrRU8eBhmIM_7zuRF6BLDLQaY3wUARrIUCInFsUjlEZpiKWhKhMDHh5nTCToLYQ3AM4mzUzShXAhJiZyixbJvis61ja4S1xi3daaP41Z7p3NXuW6XGLu1VbupbdMlbZl0HzZpbBR0kcu9ds05Oil1FezFvs_Q2_LhdfGUrl4enxf3q7QgXHQpN5YwQ6zVQhZSYsokLwjOuSxZDoZKa0rGOS-LTMRTGcs5ZZhDRgtDoJR0hm5G341vP3sbOlW7UNiq0vGePigi5gwAC0wiev0HXbe9j58cKAmMCWCDIRmpwrcheFuqjXe19juFQQ0RqzFiFSNW3xGrQXS1t-7z2pqD5CfTCNARCPGpebf-d_c_tl9Go4Vw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Gao, Wenjian</creator><creator>Huang, Ziyi</creator><creator>Ou, Wenfei</creator><creator>Tang, Xiaoqian</creator><creator>Lv, Wanying</creator><creator>Nie, Jingxin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0237-2559</orcidid></search><sort><creationdate>20220701</creationdate><title>Functional individual variability development of the neonatal brain</title><author>Gao, Wenjian ; Huang, Ziyi ; Ou, Wenfei ; Tang, Xiaoqian ; Lv, Wanying ; Nie, Jingxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-5de24d2eea68c8813485c21b58f4b0d38edf4555fc9600544b53415093cd20f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Brain architecture</topic><topic>Brain mapping</topic><topic>Cell Biology</topic><topic>Cognition</topic><topic>Cognition &amp; reasoning</topic><topic>Cortex (cingulate)</topic><topic>Cortex (frontal)</topic><topic>Cortex (parietal)</topic><topic>Functional anatomy</topic><topic>Functional magnetic resonance imaging</topic><topic>Gestational age</topic><topic>Laboratories</topic><topic>Neonates</topic><topic>Neural networks</topic><topic>Neurology</topic><topic>Neuroplasticity</topic><topic>Neurosciences</topic><topic>Newborn babies</topic><topic>Original Article</topic><topic>Prefrontal cortex</topic><topic>Somatosensory cortex</topic><topic>Structure-function relationships</topic><topic>Temporal lobe</topic><topic>Time series</topic><topic>Variability</topic><topic>Visual cortex</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Wenjian</creatorcontrib><creatorcontrib>Huang, Ziyi</creatorcontrib><creatorcontrib>Ou, Wenfei</creatorcontrib><creatorcontrib>Tang, Xiaoqian</creatorcontrib><creatorcontrib>Lv, Wanying</creatorcontrib><creatorcontrib>Nie, Jingxin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Brain Structure and Function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Wenjian</au><au>Huang, Ziyi</au><au>Ou, Wenfei</au><au>Tang, Xiaoqian</au><au>Lv, Wanying</au><au>Nie, Jingxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional individual variability development of the neonatal brain</atitle><jtitle>Brain Structure and Function</jtitle><stitle>Brain Struct Funct</stitle><addtitle>Brain Struct Funct</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>227</volume><issue>6</issue><spage>2181</spage><epage>2190</epage><pages>2181-2190</pages><issn>1863-2653</issn><eissn>1863-2661</eissn><eissn>0340-2061</eissn><abstract>Individual variability in cognition and behavior results from the differences in brain structure and function that have already emerged before birth. However, little is known about individual variability in brain functional architecture at local level in neonates which is of great significance to explore owing to largely undeveloped long-range functional connectivity and segregated functions in early brain development. To address this, resting-state fMRI data of 163 neonates ranged from 32 to 45 postconceptional weeks (PCW) were used in this study, and various functional features including functional parcellation similarity, local brain activity and local functional connectivity were used to characterize individual functional variability. We observed significantly higher local functional individual variability in superior parietal, sensorimotor, and visual cortex, and lower variability in the frontal, insula and cingulate cortex relative to other regions within each hemisphere. The mean local functional individual variability significantly increased with age, and the age effect was found larger in brain regions such as the occipital, temporal, prefrontal and parietal cortex. Our findings promote the understanding of brain plasticity and regional differential maturation in the early stage.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35668328</pmid><doi>10.1007/s00429-022-02516-8</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0237-2559</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-2653
ispartof Brain Structure and Function, 2022-07, Vol.227 (6), p.2181-2190
issn 1863-2653
1863-2661
0340-2061
language eng
recordid cdi_proquest_miscellaneous_2674001612
source SpringerLink Journals
subjects Biomedical and Life Sciences
Biomedicine
Brain
Brain architecture
Brain mapping
Cell Biology
Cognition
Cognition & reasoning
Cortex (cingulate)
Cortex (frontal)
Cortex (parietal)
Functional anatomy
Functional magnetic resonance imaging
Gestational age
Laboratories
Neonates
Neural networks
Neurology
Neuroplasticity
Neurosciences
Newborn babies
Original Article
Prefrontal cortex
Somatosensory cortex
Structure-function relationships
Temporal lobe
Time series
Variability
Visual cortex
title Functional individual variability development of the neonatal brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20individual%20variability%20development%20of%20the%20neonatal%20brain&rft.jtitle=Brain%20Structure%20and%20Function&rft.au=Gao,%20Wenjian&rft.date=2022-07-01&rft.volume=227&rft.issue=6&rft.spage=2181&rft.epage=2190&rft.pages=2181-2190&rft.issn=1863-2653&rft.eissn=1863-2661&rft_id=info:doi/10.1007/s00429-022-02516-8&rft_dat=%3Cproquest_cross%3E2680446048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2680446048&rft_id=info:pmid/35668328&rfr_iscdi=true