Mechanical regulation of synapse formation and plasticity
Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learnin...
Gespeichert in:
Veröffentlicht in: | Seminars in cell & developmental biology 2023-05, Vol.140, p.82-89 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 89 |
---|---|
container_issue | |
container_start_page | 82 |
container_title | Seminars in cell & developmental biology |
container_volume | 140 |
creator | Minegishi, Takunori Kastian, Ria Fajarwati Inagaki, Naoyuki |
description | Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learning and memory. As spines in the brain are surrounded by the microenvironment including neighboring cells and the extracellular matrix, their protrusion requires generation of force to push against these structures. In turn, neighboring cells receive force from protruding spines. Recent studies have identified BAR-domain proteins as being involved in membrane deformation to initiate spine formation. In addition, forces for dendritic filopodium extension and activity-induced spine expansion are generated through cooperation between actin polymerization and clutch coupling. On the other hand, force from expanding spines affects neurotransmitter release from presynaptic terminals. Here, we review recent advances in our understanding of the physical aspects of synapse formation and plasticity, mainly focusing on spine dynamics.
[Display omitted]
•BAR-domain proteins deform the dendritic membrane to initiate spine formation.•Actin polymerization and clutch coupling produce force to extend dendritic filopodia.•Cytoskeletons, CAMs, and the ECM provide mechanical support for spine structure.•Tunable clutch coupling mediates generation of force for spine structural plasticity.•Force from expanding spines affects presynaptic neurotransmitter release. |
doi_str_mv | 10.1016/j.semcdb.2022.05.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2673595791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1084952122001744</els_id><sourcerecordid>2673595791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-8b79c6e7bb42e748acb059329644b2ca5b06d040e0eed1b3cdec41f5d164fb043</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4Mo7vr4BiI9emmdpEm6uQiy-ALFi55DHlPN0seadIX99nbp6tHTDMPvP8P8CLmgUFCg8npVJGydtwUDxgoQBdDqgMwpKJmXsuSHu37BcyUYnZGTlFYAwBWTx2RWCikUr8o5US_oPk0XnGmyiB-bxgyh77K-ztK2M-uEWd3HdhqazmfrxqQhuDBsz8hRbZqE5_t6St7v796Wj_nz68PT8vY5dxz4kC9spZzEylrOsOIL4ywIVTIlObfMGWFBeuCAgOipLZ1Hx2ktPJW8tsDLU3I17V3H_muDadBtSA6bxnTYb5JmsiqFEpWiI8on1MU-pYi1XsfQmrjVFPROml7pSZreSdMg9ChtjF3uL2xsi_4v9GtpBG4mAMc_vwNGnVzAzqEPEd2gfR_-v_ADawR_gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673595791</pqid></control><display><type>article</type><title>Mechanical regulation of synapse formation and plasticity</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Minegishi, Takunori ; Kastian, Ria Fajarwati ; Inagaki, Naoyuki</creator><creatorcontrib>Minegishi, Takunori ; Kastian, Ria Fajarwati ; Inagaki, Naoyuki</creatorcontrib><description>Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learning and memory. As spines in the brain are surrounded by the microenvironment including neighboring cells and the extracellular matrix, their protrusion requires generation of force to push against these structures. In turn, neighboring cells receive force from protruding spines. Recent studies have identified BAR-domain proteins as being involved in membrane deformation to initiate spine formation. In addition, forces for dendritic filopodium extension and activity-induced spine expansion are generated through cooperation between actin polymerization and clutch coupling. On the other hand, force from expanding spines affects neurotransmitter release from presynaptic terminals. Here, we review recent advances in our understanding of the physical aspects of synapse formation and plasticity, mainly focusing on spine dynamics.
[Display omitted]
•BAR-domain proteins deform the dendritic membrane to initiate spine formation.•Actin polymerization and clutch coupling produce force to extend dendritic filopodia.•Cytoskeletons, CAMs, and the ECM provide mechanical support for spine structure.•Tunable clutch coupling mediates generation of force for spine structural plasticity.•Force from expanding spines affects presynaptic neurotransmitter release.</description><identifier>ISSN: 1084-9521</identifier><identifier>EISSN: 1096-3634</identifier><identifier>DOI: 10.1016/j.semcdb.2022.05.017</identifier><identifier>PMID: 35659473</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>BAR-domain protein ; Cadherin ; Dendritic Spines - physiology ; Laminin ; Neuronal Plasticity - physiology ; Neurons - metabolism ; Shootin1 ; Synapses - metabolism ; Synaptic plasticity ; Synaptic Transmission - physiology</subject><ispartof>Seminars in cell & developmental biology, 2023-05, Vol.140, p.82-89</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-8b79c6e7bb42e748acb059329644b2ca5b06d040e0eed1b3cdec41f5d164fb043</citedby><cites>FETCH-LOGICAL-c404t-8b79c6e7bb42e748acb059329644b2ca5b06d040e0eed1b3cdec41f5d164fb043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.semcdb.2022.05.017$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35659473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Minegishi, Takunori</creatorcontrib><creatorcontrib>Kastian, Ria Fajarwati</creatorcontrib><creatorcontrib>Inagaki, Naoyuki</creatorcontrib><title>Mechanical regulation of synapse formation and plasticity</title><title>Seminars in cell & developmental biology</title><addtitle>Semin Cell Dev Biol</addtitle><description>Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learning and memory. As spines in the brain are surrounded by the microenvironment including neighboring cells and the extracellular matrix, their protrusion requires generation of force to push against these structures. In turn, neighboring cells receive force from protruding spines. Recent studies have identified BAR-domain proteins as being involved in membrane deformation to initiate spine formation. In addition, forces for dendritic filopodium extension and activity-induced spine expansion are generated through cooperation between actin polymerization and clutch coupling. On the other hand, force from expanding spines affects neurotransmitter release from presynaptic terminals. Here, we review recent advances in our understanding of the physical aspects of synapse formation and plasticity, mainly focusing on spine dynamics.
[Display omitted]
•BAR-domain proteins deform the dendritic membrane to initiate spine formation.•Actin polymerization and clutch coupling produce force to extend dendritic filopodia.•Cytoskeletons, CAMs, and the ECM provide mechanical support for spine structure.•Tunable clutch coupling mediates generation of force for spine structural plasticity.•Force from expanding spines affects presynaptic neurotransmitter release.</description><subject>BAR-domain protein</subject><subject>Cadherin</subject><subject>Dendritic Spines - physiology</subject><subject>Laminin</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - metabolism</subject><subject>Shootin1</subject><subject>Synapses - metabolism</subject><subject>Synaptic plasticity</subject><subject>Synaptic Transmission - physiology</subject><issn>1084-9521</issn><issn>1096-3634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAQx4Mo7vr4BiI9emmdpEm6uQiy-ALFi55DHlPN0seadIX99nbp6tHTDMPvP8P8CLmgUFCg8npVJGydtwUDxgoQBdDqgMwpKJmXsuSHu37BcyUYnZGTlFYAwBWTx2RWCikUr8o5US_oPk0XnGmyiB-bxgyh77K-ztK2M-uEWd3HdhqazmfrxqQhuDBsz8hRbZqE5_t6St7v796Wj_nz68PT8vY5dxz4kC9spZzEylrOsOIL4ywIVTIlObfMGWFBeuCAgOipLZ1Hx2ktPJW8tsDLU3I17V3H_muDadBtSA6bxnTYb5JmsiqFEpWiI8on1MU-pYi1XsfQmrjVFPROml7pSZreSdMg9ChtjF3uL2xsi_4v9GtpBG4mAMc_vwNGnVzAzqEPEd2gfR_-v_ADawR_gQ</recordid><startdate>20230515</startdate><enddate>20230515</enddate><creator>Minegishi, Takunori</creator><creator>Kastian, Ria Fajarwati</creator><creator>Inagaki, Naoyuki</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230515</creationdate><title>Mechanical regulation of synapse formation and plasticity</title><author>Minegishi, Takunori ; Kastian, Ria Fajarwati ; Inagaki, Naoyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-8b79c6e7bb42e748acb059329644b2ca5b06d040e0eed1b3cdec41f5d164fb043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>BAR-domain protein</topic><topic>Cadherin</topic><topic>Dendritic Spines - physiology</topic><topic>Laminin</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - metabolism</topic><topic>Shootin1</topic><topic>Synapses - metabolism</topic><topic>Synaptic plasticity</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minegishi, Takunori</creatorcontrib><creatorcontrib>Kastian, Ria Fajarwati</creatorcontrib><creatorcontrib>Inagaki, Naoyuki</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Seminars in cell & developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minegishi, Takunori</au><au>Kastian, Ria Fajarwati</au><au>Inagaki, Naoyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical regulation of synapse formation and plasticity</atitle><jtitle>Seminars in cell & developmental biology</jtitle><addtitle>Semin Cell Dev Biol</addtitle><date>2023-05-15</date><risdate>2023</risdate><volume>140</volume><spage>82</spage><epage>89</epage><pages>82-89</pages><issn>1084-9521</issn><eissn>1096-3634</eissn><abstract>Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learning and memory. As spines in the brain are surrounded by the microenvironment including neighboring cells and the extracellular matrix, their protrusion requires generation of force to push against these structures. In turn, neighboring cells receive force from protruding spines. Recent studies have identified BAR-domain proteins as being involved in membrane deformation to initiate spine formation. In addition, forces for dendritic filopodium extension and activity-induced spine expansion are generated through cooperation between actin polymerization and clutch coupling. On the other hand, force from expanding spines affects neurotransmitter release from presynaptic terminals. Here, we review recent advances in our understanding of the physical aspects of synapse formation and plasticity, mainly focusing on spine dynamics.
[Display omitted]
•BAR-domain proteins deform the dendritic membrane to initiate spine formation.•Actin polymerization and clutch coupling produce force to extend dendritic filopodia.•Cytoskeletons, CAMs, and the ECM provide mechanical support for spine structure.•Tunable clutch coupling mediates generation of force for spine structural plasticity.•Force from expanding spines affects presynaptic neurotransmitter release.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35659473</pmid><doi>10.1016/j.semcdb.2022.05.017</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1084-9521 |
ispartof | Seminars in cell & developmental biology, 2023-05, Vol.140, p.82-89 |
issn | 1084-9521 1096-3634 |
language | eng |
recordid | cdi_proquest_miscellaneous_2673595791 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | BAR-domain protein Cadherin Dendritic Spines - physiology Laminin Neuronal Plasticity - physiology Neurons - metabolism Shootin1 Synapses - metabolism Synaptic plasticity Synaptic Transmission - physiology |
title | Mechanical regulation of synapse formation and plasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20regulation%20of%20synapse%20formation%20and%20plasticity&rft.jtitle=Seminars%20in%20cell%20&%20developmental%20biology&rft.au=Minegishi,%20Takunori&rft.date=2023-05-15&rft.volume=140&rft.spage=82&rft.epage=89&rft.pages=82-89&rft.issn=1084-9521&rft.eissn=1096-3634&rft_id=info:doi/10.1016/j.semcdb.2022.05.017&rft_dat=%3Cproquest_cross%3E2673595791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673595791&rft_id=info:pmid/35659473&rft_els_id=S1084952122001744&rfr_iscdi=true |