Mechanical regulation of synapse formation and plasticity

Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learnin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Seminars in cell & developmental biology 2023-05, Vol.140, p.82-89
Hauptverfasser: Minegishi, Takunori, Kastian, Ria Fajarwati, Inagaki, Naoyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89
container_issue
container_start_page 82
container_title Seminars in cell & developmental biology
container_volume 140
creator Minegishi, Takunori
Kastian, Ria Fajarwati
Inagaki, Naoyuki
description Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learning and memory. As spines in the brain are surrounded by the microenvironment including neighboring cells and the extracellular matrix, their protrusion requires generation of force to push against these structures. In turn, neighboring cells receive force from protruding spines. Recent studies have identified BAR-domain proteins as being involved in membrane deformation to initiate spine formation. In addition, forces for dendritic filopodium extension and activity-induced spine expansion are generated through cooperation between actin polymerization and clutch coupling. On the other hand, force from expanding spines affects neurotransmitter release from presynaptic terminals. Here, we review recent advances in our understanding of the physical aspects of synapse formation and plasticity, mainly focusing on spine dynamics. [Display omitted] •BAR-domain proteins deform the dendritic membrane to initiate spine formation.•Actin polymerization and clutch coupling produce force to extend dendritic filopodia.•Cytoskeletons, CAMs, and the ECM provide mechanical support for spine structure.•Tunable clutch coupling mediates generation of force for spine structural plasticity.•Force from expanding spines affects presynaptic neurotransmitter release.
doi_str_mv 10.1016/j.semcdb.2022.05.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2673595791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1084952122001744</els_id><sourcerecordid>2673595791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-8b79c6e7bb42e748acb059329644b2ca5b06d040e0eed1b3cdec41f5d164fb043</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4Mo7vr4BiI9emmdpEm6uQiy-ALFi55DHlPN0seadIX99nbp6tHTDMPvP8P8CLmgUFCg8npVJGydtwUDxgoQBdDqgMwpKJmXsuSHu37BcyUYnZGTlFYAwBWTx2RWCikUr8o5US_oPk0XnGmyiB-bxgyh77K-ztK2M-uEWd3HdhqazmfrxqQhuDBsz8hRbZqE5_t6St7v796Wj_nz68PT8vY5dxz4kC9spZzEylrOsOIL4ywIVTIlObfMGWFBeuCAgOipLZ1Hx2ktPJW8tsDLU3I17V3H_muDadBtSA6bxnTYb5JmsiqFEpWiI8on1MU-pYi1XsfQmrjVFPROml7pSZreSdMg9ChtjF3uL2xsi_4v9GtpBG4mAMc_vwNGnVzAzqEPEd2gfR_-v_ADawR_gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673595791</pqid></control><display><type>article</type><title>Mechanical regulation of synapse formation and plasticity</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Minegishi, Takunori ; Kastian, Ria Fajarwati ; Inagaki, Naoyuki</creator><creatorcontrib>Minegishi, Takunori ; Kastian, Ria Fajarwati ; Inagaki, Naoyuki</creatorcontrib><description>Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learning and memory. As spines in the brain are surrounded by the microenvironment including neighboring cells and the extracellular matrix, their protrusion requires generation of force to push against these structures. In turn, neighboring cells receive force from protruding spines. Recent studies have identified BAR-domain proteins as being involved in membrane deformation to initiate spine formation. In addition, forces for dendritic filopodium extension and activity-induced spine expansion are generated through cooperation between actin polymerization and clutch coupling. On the other hand, force from expanding spines affects neurotransmitter release from presynaptic terminals. Here, we review recent advances in our understanding of the physical aspects of synapse formation and plasticity, mainly focusing on spine dynamics. [Display omitted] •BAR-domain proteins deform the dendritic membrane to initiate spine formation.•Actin polymerization and clutch coupling produce force to extend dendritic filopodia.•Cytoskeletons, CAMs, and the ECM provide mechanical support for spine structure.•Tunable clutch coupling mediates generation of force for spine structural plasticity.•Force from expanding spines affects presynaptic neurotransmitter release.</description><identifier>ISSN: 1084-9521</identifier><identifier>EISSN: 1096-3634</identifier><identifier>DOI: 10.1016/j.semcdb.2022.05.017</identifier><identifier>PMID: 35659473</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>BAR-domain protein ; Cadherin ; Dendritic Spines - physiology ; Laminin ; Neuronal Plasticity - physiology ; Neurons - metabolism ; Shootin1 ; Synapses - metabolism ; Synaptic plasticity ; Synaptic Transmission - physiology</subject><ispartof>Seminars in cell &amp; developmental biology, 2023-05, Vol.140, p.82-89</ispartof><rights>2022 The Authors</rights><rights>Copyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-8b79c6e7bb42e748acb059329644b2ca5b06d040e0eed1b3cdec41f5d164fb043</citedby><cites>FETCH-LOGICAL-c404t-8b79c6e7bb42e748acb059329644b2ca5b06d040e0eed1b3cdec41f5d164fb043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.semcdb.2022.05.017$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35659473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Minegishi, Takunori</creatorcontrib><creatorcontrib>Kastian, Ria Fajarwati</creatorcontrib><creatorcontrib>Inagaki, Naoyuki</creatorcontrib><title>Mechanical regulation of synapse formation and plasticity</title><title>Seminars in cell &amp; developmental biology</title><addtitle>Semin Cell Dev Biol</addtitle><description>Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learning and memory. As spines in the brain are surrounded by the microenvironment including neighboring cells and the extracellular matrix, their protrusion requires generation of force to push against these structures. In turn, neighboring cells receive force from protruding spines. Recent studies have identified BAR-domain proteins as being involved in membrane deformation to initiate spine formation. In addition, forces for dendritic filopodium extension and activity-induced spine expansion are generated through cooperation between actin polymerization and clutch coupling. On the other hand, force from expanding spines affects neurotransmitter release from presynaptic terminals. Here, we review recent advances in our understanding of the physical aspects of synapse formation and plasticity, mainly focusing on spine dynamics. [Display omitted] •BAR-domain proteins deform the dendritic membrane to initiate spine formation.•Actin polymerization and clutch coupling produce force to extend dendritic filopodia.•Cytoskeletons, CAMs, and the ECM provide mechanical support for spine structure.•Tunable clutch coupling mediates generation of force for spine structural plasticity.•Force from expanding spines affects presynaptic neurotransmitter release.</description><subject>BAR-domain protein</subject><subject>Cadherin</subject><subject>Dendritic Spines - physiology</subject><subject>Laminin</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - metabolism</subject><subject>Shootin1</subject><subject>Synapses - metabolism</subject><subject>Synaptic plasticity</subject><subject>Synaptic Transmission - physiology</subject><issn>1084-9521</issn><issn>1096-3634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAQx4Mo7vr4BiI9emmdpEm6uQiy-ALFi55DHlPN0seadIX99nbp6tHTDMPvP8P8CLmgUFCg8npVJGydtwUDxgoQBdDqgMwpKJmXsuSHu37BcyUYnZGTlFYAwBWTx2RWCikUr8o5US_oPk0XnGmyiB-bxgyh77K-ztK2M-uEWd3HdhqazmfrxqQhuDBsz8hRbZqE5_t6St7v796Wj_nz68PT8vY5dxz4kC9spZzEylrOsOIL4ywIVTIlObfMGWFBeuCAgOipLZ1Hx2ktPJW8tsDLU3I17V3H_muDadBtSA6bxnTYb5JmsiqFEpWiI8on1MU-pYi1XsfQmrjVFPROml7pSZreSdMg9ChtjF3uL2xsi_4v9GtpBG4mAMc_vwNGnVzAzqEPEd2gfR_-v_ADawR_gQ</recordid><startdate>20230515</startdate><enddate>20230515</enddate><creator>Minegishi, Takunori</creator><creator>Kastian, Ria Fajarwati</creator><creator>Inagaki, Naoyuki</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230515</creationdate><title>Mechanical regulation of synapse formation and plasticity</title><author>Minegishi, Takunori ; Kastian, Ria Fajarwati ; Inagaki, Naoyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-8b79c6e7bb42e748acb059329644b2ca5b06d040e0eed1b3cdec41f5d164fb043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>BAR-domain protein</topic><topic>Cadherin</topic><topic>Dendritic Spines - physiology</topic><topic>Laminin</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - metabolism</topic><topic>Shootin1</topic><topic>Synapses - metabolism</topic><topic>Synaptic plasticity</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minegishi, Takunori</creatorcontrib><creatorcontrib>Kastian, Ria Fajarwati</creatorcontrib><creatorcontrib>Inagaki, Naoyuki</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Seminars in cell &amp; developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minegishi, Takunori</au><au>Kastian, Ria Fajarwati</au><au>Inagaki, Naoyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical regulation of synapse formation and plasticity</atitle><jtitle>Seminars in cell &amp; developmental biology</jtitle><addtitle>Semin Cell Dev Biol</addtitle><date>2023-05-15</date><risdate>2023</risdate><volume>140</volume><spage>82</spage><epage>89</epage><pages>82-89</pages><issn>1084-9521</issn><eissn>1096-3634</eissn><abstract>Dendritic spines are small protrusions arising from dendrites and constitute the major compartment of excitatory post-synapses. They change in number, shape, and size throughout life; these changes are thought to be associated with formation and reorganization of neuronal networks underlying learning and memory. As spines in the brain are surrounded by the microenvironment including neighboring cells and the extracellular matrix, their protrusion requires generation of force to push against these structures. In turn, neighboring cells receive force from protruding spines. Recent studies have identified BAR-domain proteins as being involved in membrane deformation to initiate spine formation. In addition, forces for dendritic filopodium extension and activity-induced spine expansion are generated through cooperation between actin polymerization and clutch coupling. On the other hand, force from expanding spines affects neurotransmitter release from presynaptic terminals. Here, we review recent advances in our understanding of the physical aspects of synapse formation and plasticity, mainly focusing on spine dynamics. [Display omitted] •BAR-domain proteins deform the dendritic membrane to initiate spine formation.•Actin polymerization and clutch coupling produce force to extend dendritic filopodia.•Cytoskeletons, CAMs, and the ECM provide mechanical support for spine structure.•Tunable clutch coupling mediates generation of force for spine structural plasticity.•Force from expanding spines affects presynaptic neurotransmitter release.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35659473</pmid><doi>10.1016/j.semcdb.2022.05.017</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1084-9521
ispartof Seminars in cell & developmental biology, 2023-05, Vol.140, p.82-89
issn 1084-9521
1096-3634
language eng
recordid cdi_proquest_miscellaneous_2673595791
source MEDLINE; Elsevier ScienceDirect Journals
subjects BAR-domain protein
Cadherin
Dendritic Spines - physiology
Laminin
Neuronal Plasticity - physiology
Neurons - metabolism
Shootin1
Synapses - metabolism
Synaptic plasticity
Synaptic Transmission - physiology
title Mechanical regulation of synapse formation and plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A33%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20regulation%20of%20synapse%20formation%20and%20plasticity&rft.jtitle=Seminars%20in%20cell%20&%20developmental%20biology&rft.au=Minegishi,%20Takunori&rft.date=2023-05-15&rft.volume=140&rft.spage=82&rft.epage=89&rft.pages=82-89&rft.issn=1084-9521&rft.eissn=1096-3634&rft_id=info:doi/10.1016/j.semcdb.2022.05.017&rft_dat=%3Cproquest_cross%3E2673595791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673595791&rft_id=info:pmid/35659473&rft_els_id=S1084952122001744&rfr_iscdi=true