Synthetic negative genome screen of the GPN-loop GTPase NPA3 in Saccharomyces cerevisiae

The GPN-loop GTPase Npa3 is encoded by an essential gene in the yeast Saccharomyces cerevisiae . Npa3 plays a critical role in the assembly and nuclear accumulation of RNA polymerase II (RNAPII), a function that may explain its essentiality. Genetic interactions describe the extent to which a mutati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current genetics 2022-08, Vol.68 (3-4), p.343-360
Hauptverfasser: Mora-García, Martín, Ascencio, Diana, Félix-Pérez, Tania, Ulloa-Calzonzin, Judith, Juárez-Reyes, Alejandro, Robledo-Márquez, Karina, Rebolloso-Gómez, Yolanda, Riego-Ruiz, Lina, DeLuna, Alexander, Calera, Mónica R., Sánchez-Olea, Roberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 360
container_issue 3-4
container_start_page 343
container_title Current genetics
container_volume 68
creator Mora-García, Martín
Ascencio, Diana
Félix-Pérez, Tania
Ulloa-Calzonzin, Judith
Juárez-Reyes, Alejandro
Robledo-Márquez, Karina
Rebolloso-Gómez, Yolanda
Riego-Ruiz, Lina
DeLuna, Alexander
Calera, Mónica R.
Sánchez-Olea, Roberto
description The GPN-loop GTPase Npa3 is encoded by an essential gene in the yeast Saccharomyces cerevisiae . Npa3 plays a critical role in the assembly and nuclear accumulation of RNA polymerase II (RNAPII), a function that may explain its essentiality. Genetic interactions describe the extent to which a mutation in a particular gene affects a specific phenotype when co-occurring with an alteration in a second gene. Discovering synthetic negative genetic interactions has long been used as a tool to delineate the functional relatedness between pairs of genes participating in common or compensatory biological pathways. Previously, our group showed that nuclear targeting and transcriptional activity of RNAPII were unaffected in cells expressing exclusively a C-terminal truncated mutant version of Npa3 ( npa3 ∆ C ) lacking the last 106 residues naturally absent from the single GPN protein in Archaea, but universally conserved in all Npa3 orthologs of eukaryotes. To gain insight into novel cellular functions for Npa3, we performed here a genome-wide Synthetic Genetic Array (SGA) study coupled to bulk fluorescence monitoring to identify negative genetic interactions of NPA3 by crossing an npa3 ∆ C strain with a 4,389 nonessential gene-deletion collection. This genetic screen revealed previously unknown synthetic negative interactions between NPA3 and 15 genes. Our results revealed that the Npa3 C-terminal tail extension regulates the participation of this essential GTPase in previously unknown biological processes related to mitochondrial homeostasis and ribosome biogenesis.
doi_str_mv 10.1007/s00294-022-01243-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2673595214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673595214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-aefdf03fcf0ae55479621f7a1b684e5615e4e969b66ca331402418d8c989ea293</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWqsv4EICbtyM5j7JUkSrIFpo3bgJaXqmjnQmNZkKfRufxSczWi_gwlVI8v3_OXwIHVByQgkpTxMhzIiCMFYQygQv6AbqUcHz1Wi-iXqElqzQRPMdtJvSE8mUNuU22uFSKWKE6KGH0artHqGrPW5h5rr6BfAM2tAATj4CtDhUOANvr4PhbTEPYYEH46FL-eF2eMZx3eKR8_7RxdCsPCTsIcJLnWoHe2ircvME-19nH91fXozPr4qbu8H1-dlN4Xkpu8JBNa0Ir3xFHEgpSqMYrUpHJ0oLkIpKEGCUmSjlHedUECaonmpvtAHHDO-j43XvIobnJaTONnXyMJ-7FsIyWaZKLo1k2UwfHf1Bn8Iytnm7TGldKq2kzhRbUz6GlCJUdhHrxsWVpcR-mLdr8zabt5_mLc2hw6_q5aSB6U_kW3UG-BpI-audQfyd_U_tO186jlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688768658</pqid></control><display><type>article</type><title>Synthetic negative genome screen of the GPN-loop GTPase NPA3 in Saccharomyces cerevisiae</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mora-García, Martín ; Ascencio, Diana ; Félix-Pérez, Tania ; Ulloa-Calzonzin, Judith ; Juárez-Reyes, Alejandro ; Robledo-Márquez, Karina ; Rebolloso-Gómez, Yolanda ; Riego-Ruiz, Lina ; DeLuna, Alexander ; Calera, Mónica R. ; Sánchez-Olea, Roberto</creator><creatorcontrib>Mora-García, Martín ; Ascencio, Diana ; Félix-Pérez, Tania ; Ulloa-Calzonzin, Judith ; Juárez-Reyes, Alejandro ; Robledo-Márquez, Karina ; Rebolloso-Gómez, Yolanda ; Riego-Ruiz, Lina ; DeLuna, Alexander ; Calera, Mónica R. ; Sánchez-Olea, Roberto</creatorcontrib><description>The GPN-loop GTPase Npa3 is encoded by an essential gene in the yeast Saccharomyces cerevisiae . Npa3 plays a critical role in the assembly and nuclear accumulation of RNA polymerase II (RNAPII), a function that may explain its essentiality. Genetic interactions describe the extent to which a mutation in a particular gene affects a specific phenotype when co-occurring with an alteration in a second gene. Discovering synthetic negative genetic interactions has long been used as a tool to delineate the functional relatedness between pairs of genes participating in common or compensatory biological pathways. Previously, our group showed that nuclear targeting and transcriptional activity of RNAPII were unaffected in cells expressing exclusively a C-terminal truncated mutant version of Npa3 ( npa3 ∆ C ) lacking the last 106 residues naturally absent from the single GPN protein in Archaea, but universally conserved in all Npa3 orthologs of eukaryotes. To gain insight into novel cellular functions for Npa3, we performed here a genome-wide Synthetic Genetic Array (SGA) study coupled to bulk fluorescence monitoring to identify negative genetic interactions of NPA3 by crossing an npa3 ∆ C strain with a 4,389 nonessential gene-deletion collection. This genetic screen revealed previously unknown synthetic negative interactions between NPA3 and 15 genes. Our results revealed that the Npa3 C-terminal tail extension regulates the participation of this essential GTPase in previously unknown biological processes related to mitochondrial homeostasis and ribosome biogenesis.</description><identifier>ISSN: 0172-8083</identifier><identifier>EISSN: 1432-0983</identifier><identifier>DOI: 10.1007/s00294-022-01243-1</identifier><identifier>PMID: 35660944</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Archaea ; Biochemistry ; Biological activity ; Biomedical and Life Sciences ; Cell Biology ; DNA-directed RNA polymerase ; Eukaryotes ; Evolution ; Gene deletion ; Genes ; Genetic screening ; Genomes ; Guanosine triphosphatases ; Homeostasis ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Mitochondria ; Mutation ; Original Article ; Phenotypes ; Plant Sciences ; Proteomics ; RNA polymerase ; RNA polymerase II ; Saccharomyces cerevisiae ; Yeast ; Yeasts</subject><ispartof>Current genetics, 2022-08, Vol.68 (3-4), p.343-360</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-aefdf03fcf0ae55479621f7a1b684e5615e4e969b66ca331402418d8c989ea293</citedby><cites>FETCH-LOGICAL-c375t-aefdf03fcf0ae55479621f7a1b684e5615e4e969b66ca331402418d8c989ea293</cites><orcidid>0000-0002-6523-7821 ; 0000-0002-2737-5756 ; 0000-0002-9351-9180 ; 0000-0002-9732-3345 ; 0000-0002-2883-8871 ; 0000-0002-9236-2804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00294-022-01243-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00294-022-01243-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35660944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mora-García, Martín</creatorcontrib><creatorcontrib>Ascencio, Diana</creatorcontrib><creatorcontrib>Félix-Pérez, Tania</creatorcontrib><creatorcontrib>Ulloa-Calzonzin, Judith</creatorcontrib><creatorcontrib>Juárez-Reyes, Alejandro</creatorcontrib><creatorcontrib>Robledo-Márquez, Karina</creatorcontrib><creatorcontrib>Rebolloso-Gómez, Yolanda</creatorcontrib><creatorcontrib>Riego-Ruiz, Lina</creatorcontrib><creatorcontrib>DeLuna, Alexander</creatorcontrib><creatorcontrib>Calera, Mónica R.</creatorcontrib><creatorcontrib>Sánchez-Olea, Roberto</creatorcontrib><title>Synthetic negative genome screen of the GPN-loop GTPase NPA3 in Saccharomyces cerevisiae</title><title>Current genetics</title><addtitle>Curr Genet</addtitle><addtitle>Curr Genet</addtitle><description>The GPN-loop GTPase Npa3 is encoded by an essential gene in the yeast Saccharomyces cerevisiae . Npa3 plays a critical role in the assembly and nuclear accumulation of RNA polymerase II (RNAPII), a function that may explain its essentiality. Genetic interactions describe the extent to which a mutation in a particular gene affects a specific phenotype when co-occurring with an alteration in a second gene. Discovering synthetic negative genetic interactions has long been used as a tool to delineate the functional relatedness between pairs of genes participating in common or compensatory biological pathways. Previously, our group showed that nuclear targeting and transcriptional activity of RNAPII were unaffected in cells expressing exclusively a C-terminal truncated mutant version of Npa3 ( npa3 ∆ C ) lacking the last 106 residues naturally absent from the single GPN protein in Archaea, but universally conserved in all Npa3 orthologs of eukaryotes. To gain insight into novel cellular functions for Npa3, we performed here a genome-wide Synthetic Genetic Array (SGA) study coupled to bulk fluorescence monitoring to identify negative genetic interactions of NPA3 by crossing an npa3 ∆ C strain with a 4,389 nonessential gene-deletion collection. This genetic screen revealed previously unknown synthetic negative interactions between NPA3 and 15 genes. Our results revealed that the Npa3 C-terminal tail extension regulates the participation of this essential GTPase in previously unknown biological processes related to mitochondrial homeostasis and ribosome biogenesis.</description><subject>Archaea</subject><subject>Biochemistry</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>DNA-directed RNA polymerase</subject><subject>Eukaryotes</subject><subject>Evolution</subject><subject>Gene deletion</subject><subject>Genes</subject><subject>Genetic screening</subject><subject>Genomes</subject><subject>Guanosine triphosphatases</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mitochondria</subject><subject>Mutation</subject><subject>Original Article</subject><subject>Phenotypes</subject><subject>Plant Sciences</subject><subject>Proteomics</subject><subject>RNA polymerase</subject><subject>RNA polymerase II</subject><subject>Saccharomyces cerevisiae</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0172-8083</issn><issn>1432-0983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWqsv4EICbtyM5j7JUkSrIFpo3bgJaXqmjnQmNZkKfRufxSczWi_gwlVI8v3_OXwIHVByQgkpTxMhzIiCMFYQygQv6AbqUcHz1Wi-iXqElqzQRPMdtJvSE8mUNuU22uFSKWKE6KGH0artHqGrPW5h5rr6BfAM2tAATj4CtDhUOANvr4PhbTEPYYEH46FL-eF2eMZx3eKR8_7RxdCsPCTsIcJLnWoHe2ircvME-19nH91fXozPr4qbu8H1-dlN4Xkpu8JBNa0Ir3xFHEgpSqMYrUpHJ0oLkIpKEGCUmSjlHedUECaonmpvtAHHDO-j43XvIobnJaTONnXyMJ-7FsIyWaZKLo1k2UwfHf1Bn8Iytnm7TGldKq2kzhRbUz6GlCJUdhHrxsWVpcR-mLdr8zabt5_mLc2hw6_q5aSB6U_kW3UG-BpI-audQfyd_U_tO186jlc</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Mora-García, Martín</creator><creator>Ascencio, Diana</creator><creator>Félix-Pérez, Tania</creator><creator>Ulloa-Calzonzin, Judith</creator><creator>Juárez-Reyes, Alejandro</creator><creator>Robledo-Márquez, Karina</creator><creator>Rebolloso-Gómez, Yolanda</creator><creator>Riego-Ruiz, Lina</creator><creator>DeLuna, Alexander</creator><creator>Calera, Mónica R.</creator><creator>Sánchez-Olea, Roberto</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6523-7821</orcidid><orcidid>https://orcid.org/0000-0002-2737-5756</orcidid><orcidid>https://orcid.org/0000-0002-9351-9180</orcidid><orcidid>https://orcid.org/0000-0002-9732-3345</orcidid><orcidid>https://orcid.org/0000-0002-2883-8871</orcidid><orcidid>https://orcid.org/0000-0002-9236-2804</orcidid></search><sort><creationdate>20220801</creationdate><title>Synthetic negative genome screen of the GPN-loop GTPase NPA3 in Saccharomyces cerevisiae</title><author>Mora-García, Martín ; Ascencio, Diana ; Félix-Pérez, Tania ; Ulloa-Calzonzin, Judith ; Juárez-Reyes, Alejandro ; Robledo-Márquez, Karina ; Rebolloso-Gómez, Yolanda ; Riego-Ruiz, Lina ; DeLuna, Alexander ; Calera, Mónica R. ; Sánchez-Olea, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-aefdf03fcf0ae55479621f7a1b684e5615e4e969b66ca331402418d8c989ea293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Archaea</topic><topic>Biochemistry</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>DNA-directed RNA polymerase</topic><topic>Eukaryotes</topic><topic>Evolution</topic><topic>Gene deletion</topic><topic>Genes</topic><topic>Genetic screening</topic><topic>Genomes</topic><topic>Guanosine triphosphatases</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mitochondria</topic><topic>Mutation</topic><topic>Original Article</topic><topic>Phenotypes</topic><topic>Plant Sciences</topic><topic>Proteomics</topic><topic>RNA polymerase</topic><topic>RNA polymerase II</topic><topic>Saccharomyces cerevisiae</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mora-García, Martín</creatorcontrib><creatorcontrib>Ascencio, Diana</creatorcontrib><creatorcontrib>Félix-Pérez, Tania</creatorcontrib><creatorcontrib>Ulloa-Calzonzin, Judith</creatorcontrib><creatorcontrib>Juárez-Reyes, Alejandro</creatorcontrib><creatorcontrib>Robledo-Márquez, Karina</creatorcontrib><creatorcontrib>Rebolloso-Gómez, Yolanda</creatorcontrib><creatorcontrib>Riego-Ruiz, Lina</creatorcontrib><creatorcontrib>DeLuna, Alexander</creatorcontrib><creatorcontrib>Calera, Mónica R.</creatorcontrib><creatorcontrib>Sánchez-Olea, Roberto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mora-García, Martín</au><au>Ascencio, Diana</au><au>Félix-Pérez, Tania</au><au>Ulloa-Calzonzin, Judith</au><au>Juárez-Reyes, Alejandro</au><au>Robledo-Márquez, Karina</au><au>Rebolloso-Gómez, Yolanda</au><au>Riego-Ruiz, Lina</au><au>DeLuna, Alexander</au><au>Calera, Mónica R.</au><au>Sánchez-Olea, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic negative genome screen of the GPN-loop GTPase NPA3 in Saccharomyces cerevisiae</atitle><jtitle>Current genetics</jtitle><stitle>Curr Genet</stitle><addtitle>Curr Genet</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>68</volume><issue>3-4</issue><spage>343</spage><epage>360</epage><pages>343-360</pages><issn>0172-8083</issn><eissn>1432-0983</eissn><abstract>The GPN-loop GTPase Npa3 is encoded by an essential gene in the yeast Saccharomyces cerevisiae . Npa3 plays a critical role in the assembly and nuclear accumulation of RNA polymerase II (RNAPII), a function that may explain its essentiality. Genetic interactions describe the extent to which a mutation in a particular gene affects a specific phenotype when co-occurring with an alteration in a second gene. Discovering synthetic negative genetic interactions has long been used as a tool to delineate the functional relatedness between pairs of genes participating in common or compensatory biological pathways. Previously, our group showed that nuclear targeting and transcriptional activity of RNAPII were unaffected in cells expressing exclusively a C-terminal truncated mutant version of Npa3 ( npa3 ∆ C ) lacking the last 106 residues naturally absent from the single GPN protein in Archaea, but universally conserved in all Npa3 orthologs of eukaryotes. To gain insight into novel cellular functions for Npa3, we performed here a genome-wide Synthetic Genetic Array (SGA) study coupled to bulk fluorescence monitoring to identify negative genetic interactions of NPA3 by crossing an npa3 ∆ C strain with a 4,389 nonessential gene-deletion collection. This genetic screen revealed previously unknown synthetic negative interactions between NPA3 and 15 genes. Our results revealed that the Npa3 C-terminal tail extension regulates the participation of this essential GTPase in previously unknown biological processes related to mitochondrial homeostasis and ribosome biogenesis.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35660944</pmid><doi>10.1007/s00294-022-01243-1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6523-7821</orcidid><orcidid>https://orcid.org/0000-0002-2737-5756</orcidid><orcidid>https://orcid.org/0000-0002-9351-9180</orcidid><orcidid>https://orcid.org/0000-0002-9732-3345</orcidid><orcidid>https://orcid.org/0000-0002-2883-8871</orcidid><orcidid>https://orcid.org/0000-0002-9236-2804</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0172-8083
ispartof Current genetics, 2022-08, Vol.68 (3-4), p.343-360
issn 0172-8083
1432-0983
language eng
recordid cdi_proquest_miscellaneous_2673595214
source SpringerLink Journals - AutoHoldings
subjects Archaea
Biochemistry
Biological activity
Biomedical and Life Sciences
Cell Biology
DNA-directed RNA polymerase
Eukaryotes
Evolution
Gene deletion
Genes
Genetic screening
Genomes
Guanosine triphosphatases
Homeostasis
Life Sciences
Microbial Genetics and Genomics
Microbiology
Mitochondria
Mutation
Original Article
Phenotypes
Plant Sciences
Proteomics
RNA polymerase
RNA polymerase II
Saccharomyces cerevisiae
Yeast
Yeasts
title Synthetic negative genome screen of the GPN-loop GTPase NPA3 in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20negative%20genome%20screen%20of%20the%C2%A0GPN-loop%20GTPase%C2%A0NPA3%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Current%20genetics&rft.au=Mora-Garc%C3%ADa,%20Mart%C3%ADn&rft.date=2022-08-01&rft.volume=68&rft.issue=3-4&rft.spage=343&rft.epage=360&rft.pages=343-360&rft.issn=0172-8083&rft.eissn=1432-0983&rft_id=info:doi/10.1007/s00294-022-01243-1&rft_dat=%3Cproquest_cross%3E2673595214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688768658&rft_id=info:pmid/35660944&rfr_iscdi=true