Synthetic negative genome screen of the GPN-loop GTPase NPA3 in Saccharomyces cerevisiae
The GPN-loop GTPase Npa3 is encoded by an essential gene in the yeast Saccharomyces cerevisiae . Npa3 plays a critical role in the assembly and nuclear accumulation of RNA polymerase II (RNAPII), a function that may explain its essentiality. Genetic interactions describe the extent to which a mutati...
Gespeichert in:
Veröffentlicht in: | Current genetics 2022-08, Vol.68 (3-4), p.343-360 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 360 |
---|---|
container_issue | 3-4 |
container_start_page | 343 |
container_title | Current genetics |
container_volume | 68 |
creator | Mora-García, Martín Ascencio, Diana Félix-Pérez, Tania Ulloa-Calzonzin, Judith Juárez-Reyes, Alejandro Robledo-Márquez, Karina Rebolloso-Gómez, Yolanda Riego-Ruiz, Lina DeLuna, Alexander Calera, Mónica R. Sánchez-Olea, Roberto |
description | The GPN-loop GTPase Npa3 is encoded by an essential gene in the yeast
Saccharomyces cerevisiae
. Npa3 plays a critical role in the assembly and nuclear accumulation of RNA polymerase II (RNAPII), a function that may explain its essentiality. Genetic interactions describe the extent to which a mutation in a particular gene affects a specific phenotype when co-occurring with an alteration in a second gene. Discovering synthetic negative genetic interactions has long been used as a tool to delineate the functional relatedness between pairs of genes participating in common or compensatory biological pathways. Previously, our group showed that nuclear targeting and transcriptional activity of RNAPII were unaffected in cells expressing exclusively a C-terminal truncated mutant version of Npa3 (
npa3
∆
C
) lacking the last 106 residues naturally absent from the single GPN protein in Archaea, but universally conserved in all Npa3 orthologs of eukaryotes. To gain insight into novel cellular functions for Npa3, we performed here a genome-wide Synthetic Genetic Array (SGA) study coupled to bulk fluorescence monitoring to identify negative genetic interactions of
NPA3
by crossing an
npa3
∆
C
strain with a 4,389 nonessential gene-deletion collection. This genetic screen revealed previously unknown synthetic negative interactions between
NPA3
and 15 genes. Our results revealed that the Npa3 C-terminal tail extension regulates the participation of this essential GTPase in previously unknown biological processes related to mitochondrial homeostasis and ribosome biogenesis. |
doi_str_mv | 10.1007/s00294-022-01243-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2673595214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673595214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-aefdf03fcf0ae55479621f7a1b684e5615e4e969b66ca331402418d8c989ea293</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWqsv4EICbtyM5j7JUkSrIFpo3bgJaXqmjnQmNZkKfRufxSczWi_gwlVI8v3_OXwIHVByQgkpTxMhzIiCMFYQygQv6AbqUcHz1Wi-iXqElqzQRPMdtJvSE8mUNuU22uFSKWKE6KGH0artHqGrPW5h5rr6BfAM2tAATj4CtDhUOANvr4PhbTEPYYEH46FL-eF2eMZx3eKR8_7RxdCsPCTsIcJLnWoHe2ircvME-19nH91fXozPr4qbu8H1-dlN4Xkpu8JBNa0Ir3xFHEgpSqMYrUpHJ0oLkIpKEGCUmSjlHedUECaonmpvtAHHDO-j43XvIobnJaTONnXyMJ-7FsIyWaZKLo1k2UwfHf1Bn8Iytnm7TGldKq2kzhRbUz6GlCJUdhHrxsWVpcR-mLdr8zabt5_mLc2hw6_q5aSB6U_kW3UG-BpI-audQfyd_U_tO186jlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688768658</pqid></control><display><type>article</type><title>Synthetic negative genome screen of the GPN-loop GTPase NPA3 in Saccharomyces cerevisiae</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mora-García, Martín ; Ascencio, Diana ; Félix-Pérez, Tania ; Ulloa-Calzonzin, Judith ; Juárez-Reyes, Alejandro ; Robledo-Márquez, Karina ; Rebolloso-Gómez, Yolanda ; Riego-Ruiz, Lina ; DeLuna, Alexander ; Calera, Mónica R. ; Sánchez-Olea, Roberto</creator><creatorcontrib>Mora-García, Martín ; Ascencio, Diana ; Félix-Pérez, Tania ; Ulloa-Calzonzin, Judith ; Juárez-Reyes, Alejandro ; Robledo-Márquez, Karina ; Rebolloso-Gómez, Yolanda ; Riego-Ruiz, Lina ; DeLuna, Alexander ; Calera, Mónica R. ; Sánchez-Olea, Roberto</creatorcontrib><description>The GPN-loop GTPase Npa3 is encoded by an essential gene in the yeast
Saccharomyces cerevisiae
. Npa3 plays a critical role in the assembly and nuclear accumulation of RNA polymerase II (RNAPII), a function that may explain its essentiality. Genetic interactions describe the extent to which a mutation in a particular gene affects a specific phenotype when co-occurring with an alteration in a second gene. Discovering synthetic negative genetic interactions has long been used as a tool to delineate the functional relatedness between pairs of genes participating in common or compensatory biological pathways. Previously, our group showed that nuclear targeting and transcriptional activity of RNAPII were unaffected in cells expressing exclusively a C-terminal truncated mutant version of Npa3 (
npa3
∆
C
) lacking the last 106 residues naturally absent from the single GPN protein in Archaea, but universally conserved in all Npa3 orthologs of eukaryotes. To gain insight into novel cellular functions for Npa3, we performed here a genome-wide Synthetic Genetic Array (SGA) study coupled to bulk fluorescence monitoring to identify negative genetic interactions of
NPA3
by crossing an
npa3
∆
C
strain with a 4,389 nonessential gene-deletion collection. This genetic screen revealed previously unknown synthetic negative interactions between
NPA3
and 15 genes. Our results revealed that the Npa3 C-terminal tail extension regulates the participation of this essential GTPase in previously unknown biological processes related to mitochondrial homeostasis and ribosome biogenesis.</description><identifier>ISSN: 0172-8083</identifier><identifier>EISSN: 1432-0983</identifier><identifier>DOI: 10.1007/s00294-022-01243-1</identifier><identifier>PMID: 35660944</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Archaea ; Biochemistry ; Biological activity ; Biomedical and Life Sciences ; Cell Biology ; DNA-directed RNA polymerase ; Eukaryotes ; Evolution ; Gene deletion ; Genes ; Genetic screening ; Genomes ; Guanosine triphosphatases ; Homeostasis ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Mitochondria ; Mutation ; Original Article ; Phenotypes ; Plant Sciences ; Proteomics ; RNA polymerase ; RNA polymerase II ; Saccharomyces cerevisiae ; Yeast ; Yeasts</subject><ispartof>Current genetics, 2022-08, Vol.68 (3-4), p.343-360</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-aefdf03fcf0ae55479621f7a1b684e5615e4e969b66ca331402418d8c989ea293</citedby><cites>FETCH-LOGICAL-c375t-aefdf03fcf0ae55479621f7a1b684e5615e4e969b66ca331402418d8c989ea293</cites><orcidid>0000-0002-6523-7821 ; 0000-0002-2737-5756 ; 0000-0002-9351-9180 ; 0000-0002-9732-3345 ; 0000-0002-2883-8871 ; 0000-0002-9236-2804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00294-022-01243-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00294-022-01243-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35660944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mora-García, Martín</creatorcontrib><creatorcontrib>Ascencio, Diana</creatorcontrib><creatorcontrib>Félix-Pérez, Tania</creatorcontrib><creatorcontrib>Ulloa-Calzonzin, Judith</creatorcontrib><creatorcontrib>Juárez-Reyes, Alejandro</creatorcontrib><creatorcontrib>Robledo-Márquez, Karina</creatorcontrib><creatorcontrib>Rebolloso-Gómez, Yolanda</creatorcontrib><creatorcontrib>Riego-Ruiz, Lina</creatorcontrib><creatorcontrib>DeLuna, Alexander</creatorcontrib><creatorcontrib>Calera, Mónica R.</creatorcontrib><creatorcontrib>Sánchez-Olea, Roberto</creatorcontrib><title>Synthetic negative genome screen of the GPN-loop GTPase NPA3 in Saccharomyces cerevisiae</title><title>Current genetics</title><addtitle>Curr Genet</addtitle><addtitle>Curr Genet</addtitle><description>The GPN-loop GTPase Npa3 is encoded by an essential gene in the yeast
Saccharomyces cerevisiae
. Npa3 plays a critical role in the assembly and nuclear accumulation of RNA polymerase II (RNAPII), a function that may explain its essentiality. Genetic interactions describe the extent to which a mutation in a particular gene affects a specific phenotype when co-occurring with an alteration in a second gene. Discovering synthetic negative genetic interactions has long been used as a tool to delineate the functional relatedness between pairs of genes participating in common or compensatory biological pathways. Previously, our group showed that nuclear targeting and transcriptional activity of RNAPII were unaffected in cells expressing exclusively a C-terminal truncated mutant version of Npa3 (
npa3
∆
C
) lacking the last 106 residues naturally absent from the single GPN protein in Archaea, but universally conserved in all Npa3 orthologs of eukaryotes. To gain insight into novel cellular functions for Npa3, we performed here a genome-wide Synthetic Genetic Array (SGA) study coupled to bulk fluorescence monitoring to identify negative genetic interactions of
NPA3
by crossing an
npa3
∆
C
strain with a 4,389 nonessential gene-deletion collection. This genetic screen revealed previously unknown synthetic negative interactions between
NPA3
and 15 genes. Our results revealed that the Npa3 C-terminal tail extension regulates the participation of this essential GTPase in previously unknown biological processes related to mitochondrial homeostasis and ribosome biogenesis.</description><subject>Archaea</subject><subject>Biochemistry</subject><subject>Biological activity</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>DNA-directed RNA polymerase</subject><subject>Eukaryotes</subject><subject>Evolution</subject><subject>Gene deletion</subject><subject>Genes</subject><subject>Genetic screening</subject><subject>Genomes</subject><subject>Guanosine triphosphatases</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Mitochondria</subject><subject>Mutation</subject><subject>Original Article</subject><subject>Phenotypes</subject><subject>Plant Sciences</subject><subject>Proteomics</subject><subject>RNA polymerase</subject><subject>RNA polymerase II</subject><subject>Saccharomyces cerevisiae</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0172-8083</issn><issn>1432-0983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWqsv4EICbtyM5j7JUkSrIFpo3bgJaXqmjnQmNZkKfRufxSczWi_gwlVI8v3_OXwIHVByQgkpTxMhzIiCMFYQygQv6AbqUcHz1Wi-iXqElqzQRPMdtJvSE8mUNuU22uFSKWKE6KGH0artHqGrPW5h5rr6BfAM2tAATj4CtDhUOANvr4PhbTEPYYEH46FL-eF2eMZx3eKR8_7RxdCsPCTsIcJLnWoHe2ircvME-19nH91fXozPr4qbu8H1-dlN4Xkpu8JBNa0Ir3xFHEgpSqMYrUpHJ0oLkIpKEGCUmSjlHedUECaonmpvtAHHDO-j43XvIobnJaTONnXyMJ-7FsIyWaZKLo1k2UwfHf1Bn8Iytnm7TGldKq2kzhRbUz6GlCJUdhHrxsWVpcR-mLdr8zabt5_mLc2hw6_q5aSB6U_kW3UG-BpI-audQfyd_U_tO186jlc</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Mora-García, Martín</creator><creator>Ascencio, Diana</creator><creator>Félix-Pérez, Tania</creator><creator>Ulloa-Calzonzin, Judith</creator><creator>Juárez-Reyes, Alejandro</creator><creator>Robledo-Márquez, Karina</creator><creator>Rebolloso-Gómez, Yolanda</creator><creator>Riego-Ruiz, Lina</creator><creator>DeLuna, Alexander</creator><creator>Calera, Mónica R.</creator><creator>Sánchez-Olea, Roberto</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6523-7821</orcidid><orcidid>https://orcid.org/0000-0002-2737-5756</orcidid><orcidid>https://orcid.org/0000-0002-9351-9180</orcidid><orcidid>https://orcid.org/0000-0002-9732-3345</orcidid><orcidid>https://orcid.org/0000-0002-2883-8871</orcidid><orcidid>https://orcid.org/0000-0002-9236-2804</orcidid></search><sort><creationdate>20220801</creationdate><title>Synthetic negative genome screen of the GPN-loop GTPase NPA3 in Saccharomyces cerevisiae</title><author>Mora-García, Martín ; Ascencio, Diana ; Félix-Pérez, Tania ; Ulloa-Calzonzin, Judith ; Juárez-Reyes, Alejandro ; Robledo-Márquez, Karina ; Rebolloso-Gómez, Yolanda ; Riego-Ruiz, Lina ; DeLuna, Alexander ; Calera, Mónica R. ; Sánchez-Olea, Roberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-aefdf03fcf0ae55479621f7a1b684e5615e4e969b66ca331402418d8c989ea293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Archaea</topic><topic>Biochemistry</topic><topic>Biological activity</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>DNA-directed RNA polymerase</topic><topic>Eukaryotes</topic><topic>Evolution</topic><topic>Gene deletion</topic><topic>Genes</topic><topic>Genetic screening</topic><topic>Genomes</topic><topic>Guanosine triphosphatases</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Mitochondria</topic><topic>Mutation</topic><topic>Original Article</topic><topic>Phenotypes</topic><topic>Plant Sciences</topic><topic>Proteomics</topic><topic>RNA polymerase</topic><topic>RNA polymerase II</topic><topic>Saccharomyces cerevisiae</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mora-García, Martín</creatorcontrib><creatorcontrib>Ascencio, Diana</creatorcontrib><creatorcontrib>Félix-Pérez, Tania</creatorcontrib><creatorcontrib>Ulloa-Calzonzin, Judith</creatorcontrib><creatorcontrib>Juárez-Reyes, Alejandro</creatorcontrib><creatorcontrib>Robledo-Márquez, Karina</creatorcontrib><creatorcontrib>Rebolloso-Gómez, Yolanda</creatorcontrib><creatorcontrib>Riego-Ruiz, Lina</creatorcontrib><creatorcontrib>DeLuna, Alexander</creatorcontrib><creatorcontrib>Calera, Mónica R.</creatorcontrib><creatorcontrib>Sánchez-Olea, Roberto</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mora-García, Martín</au><au>Ascencio, Diana</au><au>Félix-Pérez, Tania</au><au>Ulloa-Calzonzin, Judith</au><au>Juárez-Reyes, Alejandro</au><au>Robledo-Márquez, Karina</au><au>Rebolloso-Gómez, Yolanda</au><au>Riego-Ruiz, Lina</au><au>DeLuna, Alexander</au><au>Calera, Mónica R.</au><au>Sánchez-Olea, Roberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic negative genome screen of the GPN-loop GTPase NPA3 in Saccharomyces cerevisiae</atitle><jtitle>Current genetics</jtitle><stitle>Curr Genet</stitle><addtitle>Curr Genet</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>68</volume><issue>3-4</issue><spage>343</spage><epage>360</epage><pages>343-360</pages><issn>0172-8083</issn><eissn>1432-0983</eissn><abstract>The GPN-loop GTPase Npa3 is encoded by an essential gene in the yeast
Saccharomyces cerevisiae
. Npa3 plays a critical role in the assembly and nuclear accumulation of RNA polymerase II (RNAPII), a function that may explain its essentiality. Genetic interactions describe the extent to which a mutation in a particular gene affects a specific phenotype when co-occurring with an alteration in a second gene. Discovering synthetic negative genetic interactions has long been used as a tool to delineate the functional relatedness between pairs of genes participating in common or compensatory biological pathways. Previously, our group showed that nuclear targeting and transcriptional activity of RNAPII were unaffected in cells expressing exclusively a C-terminal truncated mutant version of Npa3 (
npa3
∆
C
) lacking the last 106 residues naturally absent from the single GPN protein in Archaea, but universally conserved in all Npa3 orthologs of eukaryotes. To gain insight into novel cellular functions for Npa3, we performed here a genome-wide Synthetic Genetic Array (SGA) study coupled to bulk fluorescence monitoring to identify negative genetic interactions of
NPA3
by crossing an
npa3
∆
C
strain with a 4,389 nonessential gene-deletion collection. This genetic screen revealed previously unknown synthetic negative interactions between
NPA3
and 15 genes. Our results revealed that the Npa3 C-terminal tail extension regulates the participation of this essential GTPase in previously unknown biological processes related to mitochondrial homeostasis and ribosome biogenesis.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>35660944</pmid><doi>10.1007/s00294-022-01243-1</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6523-7821</orcidid><orcidid>https://orcid.org/0000-0002-2737-5756</orcidid><orcidid>https://orcid.org/0000-0002-9351-9180</orcidid><orcidid>https://orcid.org/0000-0002-9732-3345</orcidid><orcidid>https://orcid.org/0000-0002-2883-8871</orcidid><orcidid>https://orcid.org/0000-0002-9236-2804</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0172-8083 |
ispartof | Current genetics, 2022-08, Vol.68 (3-4), p.343-360 |
issn | 0172-8083 1432-0983 |
language | eng |
recordid | cdi_proquest_miscellaneous_2673595214 |
source | SpringerLink Journals - AutoHoldings |
subjects | Archaea Biochemistry Biological activity Biomedical and Life Sciences Cell Biology DNA-directed RNA polymerase Eukaryotes Evolution Gene deletion Genes Genetic screening Genomes Guanosine triphosphatases Homeostasis Life Sciences Microbial Genetics and Genomics Microbiology Mitochondria Mutation Original Article Phenotypes Plant Sciences Proteomics RNA polymerase RNA polymerase II Saccharomyces cerevisiae Yeast Yeasts |
title | Synthetic negative genome screen of the GPN-loop GTPase NPA3 in Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20negative%20genome%20screen%20of%20the%C2%A0GPN-loop%20GTPase%C2%A0NPA3%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Current%20genetics&rft.au=Mora-Garc%C3%ADa,%20Mart%C3%ADn&rft.date=2022-08-01&rft.volume=68&rft.issue=3-4&rft.spage=343&rft.epage=360&rft.pages=343-360&rft.issn=0172-8083&rft.eissn=1432-0983&rft_id=info:doi/10.1007/s00294-022-01243-1&rft_dat=%3Cproquest_cross%3E2673595214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688768658&rft_id=info:pmid/35660944&rfr_iscdi=true |