A robust and reliable approach to nonlinear dynamical problems

A new approach, which utilizes Gaussian Lagrange distributed approximating functionals (LDAFs) for evaluating spatial derivatives to high accuracy is proposed for solving nonlinear dynamical problems. Three different nonlinear problems (Burgers' equation, a nonlinear Fokker-Planck equation and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 1998-06, Vol.111 (1), p.87-92
Hauptverfasser: Wei, G.W., Zhang, D.S., Kouri, D.J., Hoffman, D.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new approach, which utilizes Gaussian Lagrange distributed approximating functionals (LDAFs) for evaluating spatial derivatives to high accuracy is proposed for solving nonlinear dynamical problems. Three different nonlinear problems (Burgers' equation, a nonlinear Fokker-Planck equation and the Korteweg-de Vries equation) are used to demonstrate the usefulness and test the accuracy of the method. It is found that the present approach is robust for a variety of different nonlinear dynamical problems, and, using equivalent parameters, is the most accurate available method for the problems which we have examined.
ISSN:0010-4655
1879-2944
DOI:10.1016/S0010-4655(98)00020-4