Optical alignment and spinning of laser-trapped microscopic particles
Light-induced rotation of absorbing microscopic particles by transfer of angular momentum from light to the material raises the possibility of optically driven micromachines. The phenomenon has been observed using elliptically polarized laser beams 1 or beams with helical phase structure 2 , 3 . But...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1998-07, Vol.394 (6691), p.348-350 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 350 |
---|---|
container_issue | 6691 |
container_start_page | 348 |
container_title | Nature (London) |
container_volume | 394 |
creator | Friese, M. E. J. Nieminen, T. A. Heckenberg, N. R. Rubinsztein-Dunlop, H. |
description | Light-induced rotation of absorbing microscopic particles by transfer of angular momentum from light to the material raises the possibility of optically driven micromachines. The phenomenon has been observed using elliptically polarized laser beams
1
or beams with helical phase structure
2
,
3
. But it is difficult to develop high power in such experiments because of overheating and unwanted axial forces, limiting the achievable rotation rates to a few hertz. This problem can in principle be overcome by using transparent particles, transferring angular momentum by a mechanism first observed by Beth in 1936
4
, when he reported a tiny torque developed in a quartz ‘wave-plate’ owing to the change in polarization of transmitted light. Here we show that an optical torque can be induced on microscopic birefringent particles of calcite held by optical tweezers
5
. Depending on the polarization of the incident beam, the particles either become aligned with the plane of polarization (and thus can be rotated through specified angles) or spin with constant rotation frequency. Because these microscopic particles are transparent, they can be held in three-dimensional optical traps at very high power without heating, leading to rotation rates of over 350 Hz. |
doi_str_mv | 10.1038/28566 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26735355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26735355</sourcerecordid><originalsourceid>FETCH-LOGICAL-a397t-f8718a20f7bcb7f63bed5a041129b317c278d93010f85d5b9e96fe19ce0e8d483</originalsourceid><addsrcrecordid>eNpdkEtPwzAQhC0EEqX0P0RIcAus7fiRI6rKQ6rUC5wjx1lXrlLH2OmBf0-gSBWc9rDfzuwMIQsK9xS4fmBaSHlGZrRSsqykVudkBsB0CZrLS3KV8w4ABFXVjKw2cfTW9IXp_TbsMYyFCV2Row_Bh20xuKI3GVM5JhMjdsXe2zRkO0Rvi2jSdNxjviYXzvQZF79zTt6fVm_Ll3K9eX5dPq5Lw2s1lk4rqg0Dp1rbKid5i50wUFHK6pZTZZnSXc2BgtOiE22NtXRIa4uAuqs0n5O7o25Mw8cB89jsfbbY9ybgcMgNk4oLLsQE3vwDd8Mhhem3hkFVKc2knKDbI_SdKCd0TUx-b9JnQ6H5brL5afLkmqd92GI6if0FvwB1YnEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204478266</pqid></control><display><type>article</type><title>Optical alignment and spinning of laser-trapped microscopic particles</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Friese, M. E. J. ; Nieminen, T. A. ; Heckenberg, N. R. ; Rubinsztein-Dunlop, H.</creator><creatorcontrib>Friese, M. E. J. ; Nieminen, T. A. ; Heckenberg, N. R. ; Rubinsztein-Dunlop, H.</creatorcontrib><description>Light-induced rotation of absorbing microscopic particles by transfer of angular momentum from light to the material raises the possibility of optically driven micromachines. The phenomenon has been observed using elliptically polarized laser beams
1
or beams with helical phase structure
2
,
3
. But it is difficult to develop high power in such experiments because of overheating and unwanted axial forces, limiting the achievable rotation rates to a few hertz. This problem can in principle be overcome by using transparent particles, transferring angular momentum by a mechanism first observed by Beth in 1936
4
, when he reported a tiny torque developed in a quartz ‘wave-plate’ owing to the change in polarization of transmitted light. Here we show that an optical torque can be induced on microscopic birefringent particles of calcite held by optical tweezers
5
. Depending on the polarization of the incident beam, the particles either become aligned with the plane of polarization (and thus can be rotated through specified angles) or spin with constant rotation frequency. Because these microscopic particles are transparent, they can be held in three-dimensional optical traps at very high power without heating, leading to rotation rates of over 350 Hz.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/28566</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Humanities and Social Sciences ; Lasers ; letter ; multidisciplinary ; Optics ; Particle physics ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 1998-07, Vol.394 (6691), p.348-350</ispartof><rights>Macmillan Magazines Ltd. 1998</rights><rights>Copyright Macmillan Journals Ltd. Jul 23, 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a397t-f8718a20f7bcb7f63bed5a041129b317c278d93010f85d5b9e96fe19ce0e8d483</citedby><cites>FETCH-LOGICAL-a397t-f8718a20f7bcb7f63bed5a041129b317c278d93010f85d5b9e96fe19ce0e8d483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/28566$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/28566$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Friese, M. E. J.</creatorcontrib><creatorcontrib>Nieminen, T. A.</creatorcontrib><creatorcontrib>Heckenberg, N. R.</creatorcontrib><creatorcontrib>Rubinsztein-Dunlop, H.</creatorcontrib><title>Optical alignment and spinning of laser-trapped microscopic particles</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Light-induced rotation of absorbing microscopic particles by transfer of angular momentum from light to the material raises the possibility of optically driven micromachines. The phenomenon has been observed using elliptically polarized laser beams
1
or beams with helical phase structure
2
,
3
. But it is difficult to develop high power in such experiments because of overheating and unwanted axial forces, limiting the achievable rotation rates to a few hertz. This problem can in principle be overcome by using transparent particles, transferring angular momentum by a mechanism first observed by Beth in 1936
4
, when he reported a tiny torque developed in a quartz ‘wave-plate’ owing to the change in polarization of transmitted light. Here we show that an optical torque can be induced on microscopic birefringent particles of calcite held by optical tweezers
5
. Depending on the polarization of the incident beam, the particles either become aligned with the plane of polarization (and thus can be rotated through specified angles) or spin with constant rotation frequency. Because these microscopic particles are transparent, they can be held in three-dimensional optical traps at very high power without heating, leading to rotation rates of over 350 Hz.</description><subject>Humanities and Social Sciences</subject><subject>Lasers</subject><subject>letter</subject><subject>multidisciplinary</subject><subject>Optics</subject><subject>Particle physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEtPwzAQhC0EEqX0P0RIcAus7fiRI6rKQ6rUC5wjx1lXrlLH2OmBf0-gSBWc9rDfzuwMIQsK9xS4fmBaSHlGZrRSsqykVudkBsB0CZrLS3KV8w4ABFXVjKw2cfTW9IXp_TbsMYyFCV2Row_Bh20xuKI3GVM5JhMjdsXe2zRkO0Rvi2jSdNxjviYXzvQZF79zTt6fVm_Ll3K9eX5dPq5Lw2s1lk4rqg0Dp1rbKid5i50wUFHK6pZTZZnSXc2BgtOiE22NtXRIa4uAuqs0n5O7o25Mw8cB89jsfbbY9ybgcMgNk4oLLsQE3vwDd8Mhhem3hkFVKc2knKDbI_SdKCd0TUx-b9JnQ6H5brL5afLkmqd92GI6if0FvwB1YnEQ</recordid><startdate>19980723</startdate><enddate>19980723</enddate><creator>Friese, M. E. J.</creator><creator>Nieminen, T. A.</creator><creator>Heckenberg, N. R.</creator><creator>Rubinsztein-Dunlop, H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19980723</creationdate><title>Optical alignment and spinning of laser-trapped microscopic particles</title><author>Friese, M. E. J. ; Nieminen, T. A. ; Heckenberg, N. R. ; Rubinsztein-Dunlop, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a397t-f8718a20f7bcb7f63bed5a041129b317c278d93010f85d5b9e96fe19ce0e8d483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Humanities and Social Sciences</topic><topic>Lasers</topic><topic>letter</topic><topic>multidisciplinary</topic><topic>Optics</topic><topic>Particle physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friese, M. E. J.</creatorcontrib><creatorcontrib>Nieminen, T. A.</creatorcontrib><creatorcontrib>Heckenberg, N. R.</creatorcontrib><creatorcontrib>Rubinsztein-Dunlop, H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friese, M. E. J.</au><au>Nieminen, T. A.</au><au>Heckenberg, N. R.</au><au>Rubinsztein-Dunlop, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical alignment and spinning of laser-trapped microscopic particles</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>1998-07-23</date><risdate>1998</risdate><volume>394</volume><issue>6691</issue><spage>348</spage><epage>350</epage><pages>348-350</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Light-induced rotation of absorbing microscopic particles by transfer of angular momentum from light to the material raises the possibility of optically driven micromachines. The phenomenon has been observed using elliptically polarized laser beams
1
or beams with helical phase structure
2
,
3
. But it is difficult to develop high power in such experiments because of overheating and unwanted axial forces, limiting the achievable rotation rates to a few hertz. This problem can in principle be overcome by using transparent particles, transferring angular momentum by a mechanism first observed by Beth in 1936
4
, when he reported a tiny torque developed in a quartz ‘wave-plate’ owing to the change in polarization of transmitted light. Here we show that an optical torque can be induced on microscopic birefringent particles of calcite held by optical tweezers
5
. Depending on the polarization of the incident beam, the particles either become aligned with the plane of polarization (and thus can be rotated through specified angles) or spin with constant rotation frequency. Because these microscopic particles are transparent, they can be held in three-dimensional optical traps at very high power without heating, leading to rotation rates of over 350 Hz.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/28566</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 1998-07, Vol.394 (6691), p.348-350 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_26735355 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | Humanities and Social Sciences Lasers letter multidisciplinary Optics Particle physics Science Science (multidisciplinary) |
title | Optical alignment and spinning of laser-trapped microscopic particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20alignment%20and%20spinning%20of%20laser-trapped%20microscopic%20particles&rft.jtitle=Nature%20(London)&rft.au=Friese,%20M.%20E.%20J.&rft.date=1998-07-23&rft.volume=394&rft.issue=6691&rft.spage=348&rft.epage=350&rft.pages=348-350&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/28566&rft_dat=%3Cproquest_cross%3E26735355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204478266&rft_id=info:pmid/&rfr_iscdi=true |