Robust techniques for independent component analysis (ICA) with noisy data

In this contribution, we propose approaches to independent component analysis (ICA) when the measured signals are contaminated by additive noise. We extend existing adaptive algorithms with equivariant properties in order to considerably reduce the bias in the demixing matrix caused by measurement n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 1998-11, Vol.22 (1), p.113-129
Hauptverfasser: Cichocki, A., Douglas, S.C., Amari, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 129
container_issue 1
container_start_page 113
container_title Neurocomputing (Amsterdam)
container_volume 22
creator Cichocki, A.
Douglas, S.C.
Amari, S.
description In this contribution, we propose approaches to independent component analysis (ICA) when the measured signals are contaminated by additive noise. We extend existing adaptive algorithms with equivariant properties in order to considerably reduce the bias in the demixing matrix caused by measurement noise. Moreover, we describe a novel recurrent dynamic neural network for simultaneous estimation of the unknown mixing matrix, blind source separation, and reduction of noise in the extracted output signals. We discuss the optimal choice of nonlinear activation functions for various noise distributions assuming a generalized Gaussian-distributed noise model. Computer simulations of a selected approach are provided that confirm its usefulness and excellent performance.
doi_str_mv 10.1016/S0925-2312(98)00052-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26734225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231298000526</els_id><sourcerecordid>26734225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-51cec4b0979e06b3e9c3e7538c89eadd1a663541727443d2d7e570382a7962733</originalsourceid><addsrcrecordid>eNqFkEtLAzEQx4MoWKsfQchJ2sNqHpvXSaT4pCD4OIc0O6WR7WZNtkq_vbutePUyM4fff5j5IXROySUlVF69EsNEwThlE6OnhBDBCnmARlQrVmim5SEa_SHH6CTnD0KoosyM0NNLXGxyhzvwqyZ8biDjZUw4NBW00Jemwz6u29gMk2tcvc0h48nj7GaKv0O3wk0MeYsr17lTdLR0dYaz3z5G73e3b7OHYv583_PzwnOuu0JQD75cEKMMELngYDwHJbj22oCrKuqk5KKkiqmy5BWrFAhFuGZOGckU52N0sd_bpjgc3Nl1yB7q2jUQN9kyqXjJmOhBsQd9ijknWNo2hbVLW0uJHczZnTk7aLFG2505K_vc9T4H_RdfAZLNPkDjoQoJfGerGP7Z8ANjVHSB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26734225</pqid></control><display><type>article</type><title>Robust techniques for independent component analysis (ICA) with noisy data</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cichocki, A. ; Douglas, S.C. ; Amari, S.</creator><creatorcontrib>Cichocki, A. ; Douglas, S.C. ; Amari, S.</creatorcontrib><description>In this contribution, we propose approaches to independent component analysis (ICA) when the measured signals are contaminated by additive noise. We extend existing adaptive algorithms with equivariant properties in order to considerably reduce the bias in the demixing matrix caused by measurement noise. Moreover, we describe a novel recurrent dynamic neural network for simultaneous estimation of the unknown mixing matrix, blind source separation, and reduction of noise in the extracted output signals. We discuss the optimal choice of nonlinear activation functions for various noise distributions assuming a generalized Gaussian-distributed noise model. Computer simulations of a selected approach are provided that confirm its usefulness and excellent performance.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/S0925-2312(98)00052-6</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bias removal ; Blind source separation ; Independent component analysis (ICA) ; Maximum likelihood ; Natural gradient ; Noise cancellation</subject><ispartof>Neurocomputing (Amsterdam), 1998-11, Vol.22 (1), p.113-129</ispartof><rights>1998 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-51cec4b0979e06b3e9c3e7538c89eadd1a663541727443d2d7e570382a7962733</citedby><cites>FETCH-LOGICAL-c338t-51cec4b0979e06b3e9c3e7538c89eadd1a663541727443d2d7e570382a7962733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0925-2312(98)00052-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cichocki, A.</creatorcontrib><creatorcontrib>Douglas, S.C.</creatorcontrib><creatorcontrib>Amari, S.</creatorcontrib><title>Robust techniques for independent component analysis (ICA) with noisy data</title><title>Neurocomputing (Amsterdam)</title><description>In this contribution, we propose approaches to independent component analysis (ICA) when the measured signals are contaminated by additive noise. We extend existing adaptive algorithms with equivariant properties in order to considerably reduce the bias in the demixing matrix caused by measurement noise. Moreover, we describe a novel recurrent dynamic neural network for simultaneous estimation of the unknown mixing matrix, blind source separation, and reduction of noise in the extracted output signals. We discuss the optimal choice of nonlinear activation functions for various noise distributions assuming a generalized Gaussian-distributed noise model. Computer simulations of a selected approach are provided that confirm its usefulness and excellent performance.</description><subject>Bias removal</subject><subject>Blind source separation</subject><subject>Independent component analysis (ICA)</subject><subject>Maximum likelihood</subject><subject>Natural gradient</subject><subject>Noise cancellation</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQx4MoWKsfQchJ2sNqHpvXSaT4pCD4OIc0O6WR7WZNtkq_vbutePUyM4fff5j5IXROySUlVF69EsNEwThlE6OnhBDBCnmARlQrVmim5SEa_SHH6CTnD0KoosyM0NNLXGxyhzvwqyZ8biDjZUw4NBW00Jemwz6u29gMk2tcvc0h48nj7GaKv0O3wk0MeYsr17lTdLR0dYaz3z5G73e3b7OHYv583_PzwnOuu0JQD75cEKMMELngYDwHJbj22oCrKuqk5KKkiqmy5BWrFAhFuGZOGckU52N0sd_bpjgc3Nl1yB7q2jUQN9kyqXjJmOhBsQd9ijknWNo2hbVLW0uJHczZnTk7aLFG2505K_vc9T4H_RdfAZLNPkDjoQoJfGerGP7Z8ANjVHSB</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>Cichocki, A.</creator><creator>Douglas, S.C.</creator><creator>Amari, S.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19981101</creationdate><title>Robust techniques for independent component analysis (ICA) with noisy data</title><author>Cichocki, A. ; Douglas, S.C. ; Amari, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-51cec4b0979e06b3e9c3e7538c89eadd1a663541727443d2d7e570382a7962733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Bias removal</topic><topic>Blind source separation</topic><topic>Independent component analysis (ICA)</topic><topic>Maximum likelihood</topic><topic>Natural gradient</topic><topic>Noise cancellation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cichocki, A.</creatorcontrib><creatorcontrib>Douglas, S.C.</creatorcontrib><creatorcontrib>Amari, S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cichocki, A.</au><au>Douglas, S.C.</au><au>Amari, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust techniques for independent component analysis (ICA) with noisy data</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>1998-11-01</date><risdate>1998</risdate><volume>22</volume><issue>1</issue><spage>113</spage><epage>129</epage><pages>113-129</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>In this contribution, we propose approaches to independent component analysis (ICA) when the measured signals are contaminated by additive noise. We extend existing adaptive algorithms with equivariant properties in order to considerably reduce the bias in the demixing matrix caused by measurement noise. Moreover, we describe a novel recurrent dynamic neural network for simultaneous estimation of the unknown mixing matrix, blind source separation, and reduction of noise in the extracted output signals. We discuss the optimal choice of nonlinear activation functions for various noise distributions assuming a generalized Gaussian-distributed noise model. Computer simulations of a selected approach are provided that confirm its usefulness and excellent performance.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0925-2312(98)00052-6</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 1998-11, Vol.22 (1), p.113-129
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_26734225
source Access via ScienceDirect (Elsevier)
subjects Bias removal
Blind source separation
Independent component analysis (ICA)
Maximum likelihood
Natural gradient
Noise cancellation
title Robust techniques for independent component analysis (ICA) with noisy data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20techniques%20for%20independent%20component%20analysis%20(ICA)%20with%20noisy%20data&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Cichocki,%20A.&rft.date=1998-11-01&rft.volume=22&rft.issue=1&rft.spage=113&rft.epage=129&rft.pages=113-129&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/S0925-2312(98)00052-6&rft_dat=%3Cproquest_cross%3E26734225%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26734225&rft_id=info:pmid/&rft_els_id=S0925231298000526&rfr_iscdi=true