Tuning Interphase Chemistry to Stabilize High‐Voltage LiCoO2 Cathode Material via Spinel Coating
Cathode electrolyte interphases (CEIs) are critical to the cycling stability of high‐voltage cathodes for batteries, yet their formation mechanism and properties remain elusive. Here we report that the compositions of CEIs are largely controlled by abundant species in the inner Helmholtz layer (IHL)...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2022-08, Vol.61 (35), p.e202207000-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 35 |
container_start_page | e202207000 |
container_title | Angewandte Chemie International Edition |
container_volume | 61 |
creator | Liu, Junxiang Wang, Jiaqi Ni, Youxuan Liu, Jiuding Zhang, Yudong Lu, Yong Yan, Zhenhua Zhang, Kai Zhao, Qing Cheng, Fangyi Chen, Jun |
description | Cathode electrolyte interphases (CEIs) are critical to the cycling stability of high‐voltage cathodes for batteries, yet their formation mechanism and properties remain elusive. Here we report that the compositions of CEIs are largely controlled by abundant species in the inner Helmholtz layer (IHL) and can be tuned from material aspects. The IHL of LiCoO2 (LCO) was found to alter after charging, with a solvent‐rich environment that results in fragile organic‐rich CEIs. By passivated spinel Li4Mn5O12 coating, we achieve an anion‐rich IHL after charging, thus enabling robust LiF‐rich CEIs. In situ microscopy reveals that LiF‐rich CEIs maintain mechanical integrity at 500 °C, in sharp contrast to organic‐rich CEIs which undergo severe expansion and subsequent voids/cracks in the cathode. As a result, the spinel‐coated LCO exhibits a high specific capacity of 194 mAh g−1 at 0.05 C and a capacity retention of 83 % after 300 cycles at 0.5 C. Our work sheds new light on modulating CEIs for advanced lithium‐ion batteries.
The compositions of cathode electrolyte interphases (CEIs) are largely controlled by the abundant species in the inner Helmholtz layer (IHL) and could be tuned from material aspects. Passivating the reactive cathode surface enables anion‐rich IHLs and LiF‐rich CEIs, not only demonstrating high thermal/cycling stability but also shedding new light on the formation, properties, and modulation of CEIs for advanced battery materials. |
doi_str_mv | 10.1002/anie.202207000 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2673358557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673358557</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2890-caf0321f76eb4bc3d120376b500a16d62793aaac5cddfe0ae0deea1db2531b343</originalsourceid><addsrcrecordid>eNpdkU1PwzAMhiME4vvKEUXiwqXgJEvSHVHFx6TBDgOukdt6W1DXln6AxomfwG_klxAE7MDJr-XHlu2XsSMBZwJAnmPp6UyClGABYIPtCi1FpKxVm0EPlIpsrMUO22vbp8DHMZhttqO00TbIXZbe96Uv53xUdtTUC2yJJwta-rZrVryr-LTD1Bf-jfiNny8-3z8eq6LDOfGxT6qJ5Al2iyonfouh32PBXzzyae1LKnhSYRdmH7CtGRYtHf7GffZwdXmf3ETjyfUouRhHtYyHEGU4AyXFzBpKB2mmciFBWZNqABQmN9IOFSJmOsvzGQES5EQo8lRqJVI1UPvs9Gdu3VTPPbWdC2dkVBRYUtW3ThqrlI61tgE9-Yc-VX1Thu2ctDAQxggjAnX8S_XpknJXN36Jzcr9fS8Awx_g1Re0WtcFuG9v3Lc3bu2Nu7gbXa4z9QWqAoLl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704166161</pqid></control><display><type>article</type><title>Tuning Interphase Chemistry to Stabilize High‐Voltage LiCoO2 Cathode Material via Spinel Coating</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Junxiang ; Wang, Jiaqi ; Ni, Youxuan ; Liu, Jiuding ; Zhang, Yudong ; Lu, Yong ; Yan, Zhenhua ; Zhang, Kai ; Zhao, Qing ; Cheng, Fangyi ; Chen, Jun</creator><creatorcontrib>Liu, Junxiang ; Wang, Jiaqi ; Ni, Youxuan ; Liu, Jiuding ; Zhang, Yudong ; Lu, Yong ; Yan, Zhenhua ; Zhang, Kai ; Zhao, Qing ; Cheng, Fangyi ; Chen, Jun</creatorcontrib><description>Cathode electrolyte interphases (CEIs) are critical to the cycling stability of high‐voltage cathodes for batteries, yet their formation mechanism and properties remain elusive. Here we report that the compositions of CEIs are largely controlled by abundant species in the inner Helmholtz layer (IHL) and can be tuned from material aspects. The IHL of LiCoO2 (LCO) was found to alter after charging, with a solvent‐rich environment that results in fragile organic‐rich CEIs. By passivated spinel Li4Mn5O12 coating, we achieve an anion‐rich IHL after charging, thus enabling robust LiF‐rich CEIs. In situ microscopy reveals that LiF‐rich CEIs maintain mechanical integrity at 500 °C, in sharp contrast to organic‐rich CEIs which undergo severe expansion and subsequent voids/cracks in the cathode. As a result, the spinel‐coated LCO exhibits a high specific capacity of 194 mAh g−1 at 0.05 C and a capacity retention of 83 % after 300 cycles at 0.5 C. Our work sheds new light on modulating CEIs for advanced lithium‐ion batteries.
The compositions of cathode electrolyte interphases (CEIs) are largely controlled by the abundant species in the inner Helmholtz layer (IHL) and could be tuned from material aspects. Passivating the reactive cathode surface enables anion‐rich IHLs and LiF‐rich CEIs, not only demonstrating high thermal/cycling stability but also shedding new light on the formation, properties, and modulation of CEIs for advanced battery materials.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202207000</identifier><identifier>PMID: 35657806</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Cathodes ; Cathodic coating (process) ; Charging ; Coatings ; Electric potential ; Electrode materials ; LiCoO2 Cathode ; Lithium ; Lithium compounds ; Lithium fluoride ; Lithium-Ion Batteries ; Solid/Cathode Electrolyte Interphase (SEI/CEI) ; Specific capacity ; Spinel ; Spinel Coating ; Voltage</subject><ispartof>Angewandte Chemie International Edition, 2022-08, Vol.61 (35), p.e202207000-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8604-9689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202207000$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202207000$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35657806$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Junxiang</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Ni, Youxuan</creatorcontrib><creatorcontrib>Liu, Jiuding</creatorcontrib><creatorcontrib>Zhang, Yudong</creatorcontrib><creatorcontrib>Lu, Yong</creatorcontrib><creatorcontrib>Yan, Zhenhua</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><creatorcontrib>Cheng, Fangyi</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><title>Tuning Interphase Chemistry to Stabilize High‐Voltage LiCoO2 Cathode Material via Spinel Coating</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Cathode electrolyte interphases (CEIs) are critical to the cycling stability of high‐voltage cathodes for batteries, yet their formation mechanism and properties remain elusive. Here we report that the compositions of CEIs are largely controlled by abundant species in the inner Helmholtz layer (IHL) and can be tuned from material aspects. The IHL of LiCoO2 (LCO) was found to alter after charging, with a solvent‐rich environment that results in fragile organic‐rich CEIs. By passivated spinel Li4Mn5O12 coating, we achieve an anion‐rich IHL after charging, thus enabling robust LiF‐rich CEIs. In situ microscopy reveals that LiF‐rich CEIs maintain mechanical integrity at 500 °C, in sharp contrast to organic‐rich CEIs which undergo severe expansion and subsequent voids/cracks in the cathode. As a result, the spinel‐coated LCO exhibits a high specific capacity of 194 mAh g−1 at 0.05 C and a capacity retention of 83 % after 300 cycles at 0.5 C. Our work sheds new light on modulating CEIs for advanced lithium‐ion batteries.
The compositions of cathode electrolyte interphases (CEIs) are largely controlled by the abundant species in the inner Helmholtz layer (IHL) and could be tuned from material aspects. Passivating the reactive cathode surface enables anion‐rich IHLs and LiF‐rich CEIs, not only demonstrating high thermal/cycling stability but also shedding new light on the formation, properties, and modulation of CEIs for advanced battery materials.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Cathodic coating (process)</subject><subject>Charging</subject><subject>Coatings</subject><subject>Electric potential</subject><subject>Electrode materials</subject><subject>LiCoO2 Cathode</subject><subject>Lithium</subject><subject>Lithium compounds</subject><subject>Lithium fluoride</subject><subject>Lithium-Ion Batteries</subject><subject>Solid/Cathode Electrolyte Interphase (SEI/CEI)</subject><subject>Specific capacity</subject><subject>Spinel</subject><subject>Spinel Coating</subject><subject>Voltage</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkU1PwzAMhiME4vvKEUXiwqXgJEvSHVHFx6TBDgOukdt6W1DXln6AxomfwG_klxAE7MDJr-XHlu2XsSMBZwJAnmPp6UyClGABYIPtCi1FpKxVm0EPlIpsrMUO22vbp8DHMZhttqO00TbIXZbe96Uv53xUdtTUC2yJJwta-rZrVryr-LTD1Bf-jfiNny8-3z8eq6LDOfGxT6qJ5Al2iyonfouh32PBXzzyae1LKnhSYRdmH7CtGRYtHf7GffZwdXmf3ETjyfUouRhHtYyHEGU4AyXFzBpKB2mmciFBWZNqABQmN9IOFSJmOsvzGQES5EQo8lRqJVI1UPvs9Gdu3VTPPbWdC2dkVBRYUtW3ThqrlI61tgE9-Yc-VX1Thu2ctDAQxggjAnX8S_XpknJXN36Jzcr9fS8Awx_g1Re0WtcFuG9v3Lc3bu2Nu7gbXa4z9QWqAoLl</recordid><startdate>20220826</startdate><enddate>20220826</enddate><creator>Liu, Junxiang</creator><creator>Wang, Jiaqi</creator><creator>Ni, Youxuan</creator><creator>Liu, Jiuding</creator><creator>Zhang, Yudong</creator><creator>Lu, Yong</creator><creator>Yan, Zhenhua</creator><creator>Zhang, Kai</creator><creator>Zhao, Qing</creator><creator>Cheng, Fangyi</creator><creator>Chen, Jun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8604-9689</orcidid></search><sort><creationdate>20220826</creationdate><title>Tuning Interphase Chemistry to Stabilize High‐Voltage LiCoO2 Cathode Material via Spinel Coating</title><author>Liu, Junxiang ; Wang, Jiaqi ; Ni, Youxuan ; Liu, Jiuding ; Zhang, Yudong ; Lu, Yong ; Yan, Zhenhua ; Zhang, Kai ; Zhao, Qing ; Cheng, Fangyi ; Chen, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2890-caf0321f76eb4bc3d120376b500a16d62793aaac5cddfe0ae0deea1db2531b343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Cathodic coating (process)</topic><topic>Charging</topic><topic>Coatings</topic><topic>Electric potential</topic><topic>Electrode materials</topic><topic>LiCoO2 Cathode</topic><topic>Lithium</topic><topic>Lithium compounds</topic><topic>Lithium fluoride</topic><topic>Lithium-Ion Batteries</topic><topic>Solid/Cathode Electrolyte Interphase (SEI/CEI)</topic><topic>Specific capacity</topic><topic>Spinel</topic><topic>Spinel Coating</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Junxiang</creatorcontrib><creatorcontrib>Wang, Jiaqi</creatorcontrib><creatorcontrib>Ni, Youxuan</creatorcontrib><creatorcontrib>Liu, Jiuding</creatorcontrib><creatorcontrib>Zhang, Yudong</creatorcontrib><creatorcontrib>Lu, Yong</creatorcontrib><creatorcontrib>Yan, Zhenhua</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><creatorcontrib>Cheng, Fangyi</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Junxiang</au><au>Wang, Jiaqi</au><au>Ni, Youxuan</au><au>Liu, Jiuding</au><au>Zhang, Yudong</au><au>Lu, Yong</au><au>Yan, Zhenhua</au><au>Zhang, Kai</au><au>Zhao, Qing</au><au>Cheng, Fangyi</au><au>Chen, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tuning Interphase Chemistry to Stabilize High‐Voltage LiCoO2 Cathode Material via Spinel Coating</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-08-26</date><risdate>2022</risdate><volume>61</volume><issue>35</issue><spage>e202207000</spage><epage>n/a</epage><pages>e202207000-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Cathode electrolyte interphases (CEIs) are critical to the cycling stability of high‐voltage cathodes for batteries, yet their formation mechanism and properties remain elusive. Here we report that the compositions of CEIs are largely controlled by abundant species in the inner Helmholtz layer (IHL) and can be tuned from material aspects. The IHL of LiCoO2 (LCO) was found to alter after charging, with a solvent‐rich environment that results in fragile organic‐rich CEIs. By passivated spinel Li4Mn5O12 coating, we achieve an anion‐rich IHL after charging, thus enabling robust LiF‐rich CEIs. In situ microscopy reveals that LiF‐rich CEIs maintain mechanical integrity at 500 °C, in sharp contrast to organic‐rich CEIs which undergo severe expansion and subsequent voids/cracks in the cathode. As a result, the spinel‐coated LCO exhibits a high specific capacity of 194 mAh g−1 at 0.05 C and a capacity retention of 83 % after 300 cycles at 0.5 C. Our work sheds new light on modulating CEIs for advanced lithium‐ion batteries.
The compositions of cathode electrolyte interphases (CEIs) are largely controlled by the abundant species in the inner Helmholtz layer (IHL) and could be tuned from material aspects. Passivating the reactive cathode surface enables anion‐rich IHLs and LiF‐rich CEIs, not only demonstrating high thermal/cycling stability but also shedding new light on the formation, properties, and modulation of CEIs for advanced battery materials.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35657806</pmid><doi>10.1002/anie.202207000</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-8604-9689</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2022-08, Vol.61 (35), p.e202207000-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2673358557 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Batteries Cathodes Cathodic coating (process) Charging Coatings Electric potential Electrode materials LiCoO2 Cathode Lithium Lithium compounds Lithium fluoride Lithium-Ion Batteries Solid/Cathode Electrolyte Interphase (SEI/CEI) Specific capacity Spinel Spinel Coating Voltage |
title | Tuning Interphase Chemistry to Stabilize High‐Voltage LiCoO2 Cathode Material via Spinel Coating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A12%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tuning%20Interphase%20Chemistry%20to%20Stabilize%20High%E2%80%90Voltage%20LiCoO2%20Cathode%20Material%20via%20Spinel%20Coating&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Liu,%20Junxiang&rft.date=2022-08-26&rft.volume=61&rft.issue=35&rft.spage=e202207000&rft.epage=n/a&rft.pages=e202207000-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202207000&rft_dat=%3Cproquest_pubme%3E2673358557%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2704166161&rft_id=info:pmid/35657806&rfr_iscdi=true |