Experimental imaging and Monte Carlo modeling of ultrafast pulse propagation in thin scattering slabs

Significance: Most radiative transport problems in turbid media are typically associated with mm or cm scales, leading to typical time scales in the range of hundreds of ps or more. In certain cases, however, much thinner layers can also be relevant, which can dramatically alter the overall transpor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical optics 2022-08, Vol.27 (8), p.083020-083020
Hauptverfasser: Pattelli, Lorenzo, Mazzamuto, Giacomo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 083020
container_issue 8
container_start_page 083020
container_title Journal of biomedical optics
container_volume 27
creator Pattelli, Lorenzo
Mazzamuto, Giacomo
description Significance: Most radiative transport problems in turbid media are typically associated with mm or cm scales, leading to typical time scales in the range of hundreds of ps or more. In certain cases, however, much thinner layers can also be relevant, which can dramatically alter the overall transport properties of a scattering medium. Studying scattering in these thin layers requires ultrafast detection techniques and adaptations to the common Monte Carlo (MC) approach. Aim: We aim to discuss a few relevant aspects for the simulation of light transport in thin scattering membranes, and compare the obtained numerical results with experimental measurements based on an all-optical gating technique. Approach: A thin membrane with controlled scattering properties based on polymer-dispersed TiO2 nanoparticles is fabricated for experimental validation. Transmittance measurements are compared against a custom open-source MC implementation including specific pulse profiles for tightly focused femtosecond laser pulses. Results: Experimental transmittance data of ultrafast pulses through a thin scattering sample are compared with MC simulations in the spatiotemporal domain to retrieve its scattering properties. The results show good agreement also at short distances and time scales. Conclusions: When simulating light transport in scattering membranes with thicknesses in the orders of tens of micrometer, care has to be taken when describing the temporal, spatial, and divergence profiles of the source term, as well as the possible truncation of step length distributions, which could be introduced by simple strategies for the generation of random exponentially distributed variables.
doi_str_mv 10.1117/1.JBO.27.8.083020
format Article
fullrecord <record><control><sourceid>proquest_spie_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2673357841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673357841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-e41c5a0af1a0c02aac50fd806a4fa19ebc190dc02f6780a478d0ac79d45283c03</originalsourceid><addsrcrecordid>eNp1kU9vFSEUxSdGY__oB3BjSNy4mfECA8NsTPSlVZs23eia3Mcwr9MwMAJj9NvLy6tVm3QDhPO7B05OVb2i0FBKu3e0ufh43bCuUQ0oDgyeVMdUSKgZU_RpOZfbmkupjqqTlG4BQMlePq-OuJBC8FYcV_bs52LjNFuf0ZFpxt3kdwT9QK6Cz5ZsMLpA5jBYtxfCSFaXI46YMllWlyxZYlhwh3kKnkye5JuyJIM5F9sykRxu04vq2YgFfnm3n1bfzs--bj7Xl9efvmw-XNaG9zLXtqVGIOBIEQwwRCNgHBRIbEekvd0a2sNQlFF2CrDt1ABoun5oBVPcAD-t3h98l3U728GUVBGdXkpAjL90wEn_r_jpRu_CD91TyQS0xeDtnUEM31ebsp6nZKxz6G1Yk2ay41x0qqUFffMAvQ1r9CWeZkoy3krW7yl6oEwMKUU73n-Ggt6XqKkuJWrWaaUPJZaZ1_-muJ_401oBmgOQlsn-ffZxx98uAag5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862346291</pqid></control><display><type>article</type><title>Experimental imaging and Monte Carlo modeling of ultrafast pulse propagation in thin scattering slabs</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>ProQuest Central</source><creator>Pattelli, Lorenzo ; Mazzamuto, Giacomo</creator><creatorcontrib>Pattelli, Lorenzo ; Mazzamuto, Giacomo</creatorcontrib><description>Significance: Most radiative transport problems in turbid media are typically associated with mm or cm scales, leading to typical time scales in the range of hundreds of ps or more. In certain cases, however, much thinner layers can also be relevant, which can dramatically alter the overall transport properties of a scattering medium. Studying scattering in these thin layers requires ultrafast detection techniques and adaptations to the common Monte Carlo (MC) approach. Aim: We aim to discuss a few relevant aspects for the simulation of light transport in thin scattering membranes, and compare the obtained numerical results with experimental measurements based on an all-optical gating technique. Approach: A thin membrane with controlled scattering properties based on polymer-dispersed TiO2 nanoparticles is fabricated for experimental validation. Transmittance measurements are compared against a custom open-source MC implementation including specific pulse profiles for tightly focused femtosecond laser pulses. Results: Experimental transmittance data of ultrafast pulses through a thin scattering sample are compared with MC simulations in the spatiotemporal domain to retrieve its scattering properties. The results show good agreement also at short distances and time scales. Conclusions: When simulating light transport in scattering membranes with thicknesses in the orders of tens of micrometer, care has to be taken when describing the temporal, spatial, and divergence profiles of the source term, as well as the possible truncation of step length distributions, which could be introduced by simple strategies for the generation of random exponentially distributed variables.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.27.8.083020</identifier><identifier>PMID: 35655345</identifier><language>eng</language><publisher>United States: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Computer Simulation ; Diagnostic Imaging ; Femtosecond pulsed lasers ; Femtosecond pulses ; Heart Rate ; Lasers ; Light ; Membranes ; Monte Carlo Method ; Nanoparticles ; Optical properties ; Optics ; Polymers ; Propagation ; Pulse propagation ; Random variables ; Scattering ; Simulation ; Slabs ; Special Section Celebrating 30 Years of Open Source Monte Carlo Codes in Biomedical Optics ; Thin films ; Time ; Titanium dioxide ; Transmittance ; Transport properties</subject><ispartof>Journal of biomedical optics, 2022-08, Vol.27 (8), p.083020-083020</ispartof><rights>The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.</rights><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 The Authors 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-e41c5a0af1a0c02aac50fd806a4fa19ebc190dc02f6780a478d0ac79d45283c03</citedby><cites>FETCH-LOGICAL-c396t-e41c5a0af1a0c02aac50fd806a4fa19ebc190dc02f6780a478d0ac79d45283c03</cites><orcidid>0000-0003-3077-3904 ; 0000-0001-5040-5282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2862346291/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2862346291?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,21367,27901,27902,33721,33722,43781,53766,53768,74045</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35655345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pattelli, Lorenzo</creatorcontrib><creatorcontrib>Mazzamuto, Giacomo</creatorcontrib><title>Experimental imaging and Monte Carlo modeling of ultrafast pulse propagation in thin scattering slabs</title><title>Journal of biomedical optics</title><addtitle>J. Biomed. Opt</addtitle><description>Significance: Most radiative transport problems in turbid media are typically associated with mm or cm scales, leading to typical time scales in the range of hundreds of ps or more. In certain cases, however, much thinner layers can also be relevant, which can dramatically alter the overall transport properties of a scattering medium. Studying scattering in these thin layers requires ultrafast detection techniques and adaptations to the common Monte Carlo (MC) approach. Aim: We aim to discuss a few relevant aspects for the simulation of light transport in thin scattering membranes, and compare the obtained numerical results with experimental measurements based on an all-optical gating technique. Approach: A thin membrane with controlled scattering properties based on polymer-dispersed TiO2 nanoparticles is fabricated for experimental validation. Transmittance measurements are compared against a custom open-source MC implementation including specific pulse profiles for tightly focused femtosecond laser pulses. Results: Experimental transmittance data of ultrafast pulses through a thin scattering sample are compared with MC simulations in the spatiotemporal domain to retrieve its scattering properties. The results show good agreement also at short distances and time scales. Conclusions: When simulating light transport in scattering membranes with thicknesses in the orders of tens of micrometer, care has to be taken when describing the temporal, spatial, and divergence profiles of the source term, as well as the possible truncation of step length distributions, which could be introduced by simple strategies for the generation of random exponentially distributed variables.</description><subject>Computer Simulation</subject><subject>Diagnostic Imaging</subject><subject>Femtosecond pulsed lasers</subject><subject>Femtosecond pulses</subject><subject>Heart Rate</subject><subject>Lasers</subject><subject>Light</subject><subject>Membranes</subject><subject>Monte Carlo Method</subject><subject>Nanoparticles</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Polymers</subject><subject>Propagation</subject><subject>Pulse propagation</subject><subject>Random variables</subject><subject>Scattering</subject><subject>Simulation</subject><subject>Slabs</subject><subject>Special Section Celebrating 30 Years of Open Source Monte Carlo Codes in Biomedical Optics</subject><subject>Thin films</subject><subject>Time</subject><subject>Titanium dioxide</subject><subject>Transmittance</subject><subject>Transport properties</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU9vFSEUxSdGY__oB3BjSNy4mfECA8NsTPSlVZs23eia3Mcwr9MwMAJj9NvLy6tVm3QDhPO7B05OVb2i0FBKu3e0ufh43bCuUQ0oDgyeVMdUSKgZU_RpOZfbmkupjqqTlG4BQMlePq-OuJBC8FYcV_bs52LjNFuf0ZFpxt3kdwT9QK6Cz5ZsMLpA5jBYtxfCSFaXI46YMllWlyxZYlhwh3kKnkye5JuyJIM5F9sykRxu04vq2YgFfnm3n1bfzs--bj7Xl9efvmw-XNaG9zLXtqVGIOBIEQwwRCNgHBRIbEekvd0a2sNQlFF2CrDt1ABoun5oBVPcAD-t3h98l3U728GUVBGdXkpAjL90wEn_r_jpRu_CD91TyQS0xeDtnUEM31ebsp6nZKxz6G1Yk2ay41x0qqUFffMAvQ1r9CWeZkoy3krW7yl6oEwMKUU73n-Ggt6XqKkuJWrWaaUPJZaZ1_-muJ_401oBmgOQlsn-ffZxx98uAag5</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Pattelli, Lorenzo</creator><creator>Mazzamuto, Giacomo</creator><general>Society of Photo-Optical Instrumentation Engineers</general><general>S P I E - International Society for</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3077-3904</orcidid><orcidid>https://orcid.org/0000-0001-5040-5282</orcidid></search><sort><creationdate>20220801</creationdate><title>Experimental imaging and Monte Carlo modeling of ultrafast pulse propagation in thin scattering slabs</title><author>Pattelli, Lorenzo ; Mazzamuto, Giacomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-e41c5a0af1a0c02aac50fd806a4fa19ebc190dc02f6780a478d0ac79d45283c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer Simulation</topic><topic>Diagnostic Imaging</topic><topic>Femtosecond pulsed lasers</topic><topic>Femtosecond pulses</topic><topic>Heart Rate</topic><topic>Lasers</topic><topic>Light</topic><topic>Membranes</topic><topic>Monte Carlo Method</topic><topic>Nanoparticles</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Polymers</topic><topic>Propagation</topic><topic>Pulse propagation</topic><topic>Random variables</topic><topic>Scattering</topic><topic>Simulation</topic><topic>Slabs</topic><topic>Special Section Celebrating 30 Years of Open Source Monte Carlo Codes in Biomedical Optics</topic><topic>Thin films</topic><topic>Time</topic><topic>Titanium dioxide</topic><topic>Transmittance</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pattelli, Lorenzo</creatorcontrib><creatorcontrib>Mazzamuto, Giacomo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pattelli, Lorenzo</au><au>Mazzamuto, Giacomo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental imaging and Monte Carlo modeling of ultrafast pulse propagation in thin scattering slabs</atitle><jtitle>Journal of biomedical optics</jtitle><addtitle>J. Biomed. Opt</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>27</volume><issue>8</issue><spage>083020</spage><epage>083020</epage><pages>083020-083020</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><abstract>Significance: Most radiative transport problems in turbid media are typically associated with mm or cm scales, leading to typical time scales in the range of hundreds of ps or more. In certain cases, however, much thinner layers can also be relevant, which can dramatically alter the overall transport properties of a scattering medium. Studying scattering in these thin layers requires ultrafast detection techniques and adaptations to the common Monte Carlo (MC) approach. Aim: We aim to discuss a few relevant aspects for the simulation of light transport in thin scattering membranes, and compare the obtained numerical results with experimental measurements based on an all-optical gating technique. Approach: A thin membrane with controlled scattering properties based on polymer-dispersed TiO2 nanoparticles is fabricated for experimental validation. Transmittance measurements are compared against a custom open-source MC implementation including specific pulse profiles for tightly focused femtosecond laser pulses. Results: Experimental transmittance data of ultrafast pulses through a thin scattering sample are compared with MC simulations in the spatiotemporal domain to retrieve its scattering properties. The results show good agreement also at short distances and time scales. Conclusions: When simulating light transport in scattering membranes with thicknesses in the orders of tens of micrometer, care has to be taken when describing the temporal, spatial, and divergence profiles of the source term, as well as the possible truncation of step length distributions, which could be introduced by simple strategies for the generation of random exponentially distributed variables.</abstract><cop>United States</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>35655345</pmid><doi>10.1117/1.JBO.27.8.083020</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3077-3904</orcidid><orcidid>https://orcid.org/0000-0001-5040-5282</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of biomedical optics, 2022-08, Vol.27 (8), p.083020-083020
issn 1083-3668
1560-2281
language eng
recordid cdi_proquest_miscellaneous_2673357841
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; ProQuest Central
subjects Computer Simulation
Diagnostic Imaging
Femtosecond pulsed lasers
Femtosecond pulses
Heart Rate
Lasers
Light
Membranes
Monte Carlo Method
Nanoparticles
Optical properties
Optics
Polymers
Propagation
Pulse propagation
Random variables
Scattering
Simulation
Slabs
Special Section Celebrating 30 Years of Open Source Monte Carlo Codes in Biomedical Optics
Thin films
Time
Titanium dioxide
Transmittance
Transport properties
title Experimental imaging and Monte Carlo modeling of ultrafast pulse propagation in thin scattering slabs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A26%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_spie_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20imaging%20and%20Monte%20Carlo%20modeling%20of%20ultrafast%20pulse%20propagation%20in%20thin%20scattering%20slabs&rft.jtitle=Journal%20of%20biomedical%20optics&rft.au=Pattelli,%20Lorenzo&rft.date=2022-08-01&rft.volume=27&rft.issue=8&rft.spage=083020&rft.epage=083020&rft.pages=083020-083020&rft.issn=1083-3668&rft.eissn=1560-2281&rft_id=info:doi/10.1117/1.JBO.27.8.083020&rft_dat=%3Cproquest_spie_%3E2673357841%3C/proquest_spie_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862346291&rft_id=info:pmid/35655345&rfr_iscdi=true