Real‐time fiber‐optic recording of acute‐ischemic‐stroke signatures

We present an experimental framework and methodology for in vivo studies on rat stroke models that enable a real‐time fiber‐optic recording of stroke‐induced hydrogen peroxide and pH transients in ischemia‐affected brain areas. Arrays of reconnectable implantable fiber probes combined with advanced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biophotonics 2022-10, Vol.15 (10), p.e202200050-n/a
Hauptverfasser: Pochechuev, Matvey S., Bilan, Dmitry S., Fedotov, Ilya V., Kelmanson, Ilya V., Solotenkov, Maxim A., Stepanov, Evgeny A., Kotova, Daria A., Ivanova, Alexandra D., Kostyuk, Alexander I., Raevskii, Roman I., Lanin, Aleksandr A., Fedotov, Andrei B., Belousov, Vsevolod V., Zheltikov, Aleksei M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page e202200050
container_title Journal of biophotonics
container_volume 15
creator Pochechuev, Matvey S.
Bilan, Dmitry S.
Fedotov, Ilya V.
Kelmanson, Ilya V.
Solotenkov, Maxim A.
Stepanov, Evgeny A.
Kotova, Daria A.
Ivanova, Alexandra D.
Kostyuk, Alexander I.
Raevskii, Roman I.
Lanin, Aleksandr A.
Fedotov, Andrei B.
Belousov, Vsevolod V.
Zheltikov, Aleksei M.
description We present an experimental framework and methodology for in vivo studies on rat stroke models that enable a real‐time fiber‐optic recording of stroke‐induced hydrogen peroxide and pH transients in ischemia‐affected brain areas. Arrays of reconnectable implantable fiber probes combined with advanced optogenetic fluorescent protein sensors are shown to enable a quantitative multisite time‐resolved study of oxidative‐stress and acidosis buildup dynamics as the key markers, correlates and possible drivers of ischemic stroke. The fiber probes designed for this work provide a wavelength‐multiplex forward‐propagation channel for a spatially localized, dual‐pathway excitation of genetically encoded fluorescence‐protein sensors along with a back‐propagation channel for the fluorescence return from optically driven fluorescence sensors. We show that the spectral analysis of the fiber‐probe‐collected fluorescence return provides means for a high‐fidelity autofluorescence background subtraction, thus enhancing the sensitivity of real‐time detection of stroke‐induced transients and significantly reducing measurement uncertainties in in vivo acute‐stroke studies as inherently statistical experiments operating with outcomes of multiply repeated measurements on large populations of individually variable animal stroke models. We present an experimental framework and methodology for in vivo studies on rat stroke models that enable a real‐time fiber‐optic recording of stroke‐induced hydrogen peroxide and pH transients in ischemia‐affected brain areas. Arrays of reconnectable implantable fiber probes combined with advanced optogenetic fluorescent protein sensors are shown to enable a quantitative multisite time‐resolved study of oxidative‐stress and acidosis buildup dynamics as the key markers, correlates and possible drivers of ischemic stroke.
doi_str_mv 10.1002/jbio.202200050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2673357076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673357076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-7548e09b0d6c440ad28c5626ff5c4bd0b2b2e9c6e7e1ed8f5907a71eb4e5c8f73</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMojn9bl1Jw46bjbdIk7VIH_wcEUXAX2vRWM7bNmLSIOx_BZ_RJjIyO4MbVPZf73cPhELKbwDgBoIez0tgxBUoBgMMK2UgykcYg0mx1qdn9iGx6PwMQwDhbJyPGBU8llxvk6gaL5uPtvTctRrUp0YXFznujI4fausp0D5Gto0IPPYaT8foRW6OD9L2zTxh589AV_eDQb5O1umg87nzPLXJ3enI7OY-n12cXk6NprJlkEEueZgh5CZXQaQpFRTPNBRV1zXVaVlDSkmKuBUpMsMpqnoMsZIJlilxntWRb5GDhO3f2eUDfqzbEwqYpOrSDV1RIxrgEKQK6_wed2cF1IZ2ikoLgiaRJoMYLSjvrvcNazZ1pC_eqElBfNauvmtWy5vCw9207lC1WS_yn1wDkC-DFNPj6j526PL64_jX_BGFUjUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720651721</pqid></control><display><type>article</type><title>Real‐time fiber‐optic recording of acute‐ischemic‐stroke signatures</title><source>Access via Wiley Online Library</source><creator>Pochechuev, Matvey S. ; Bilan, Dmitry S. ; Fedotov, Ilya V. ; Kelmanson, Ilya V. ; Solotenkov, Maxim A. ; Stepanov, Evgeny A. ; Kotova, Daria A. ; Ivanova, Alexandra D. ; Kostyuk, Alexander I. ; Raevskii, Roman I. ; Lanin, Aleksandr A. ; Fedotov, Andrei B. ; Belousov, Vsevolod V. ; Zheltikov, Aleksei M.</creator><creatorcontrib>Pochechuev, Matvey S. ; Bilan, Dmitry S. ; Fedotov, Ilya V. ; Kelmanson, Ilya V. ; Solotenkov, Maxim A. ; Stepanov, Evgeny A. ; Kotova, Daria A. ; Ivanova, Alexandra D. ; Kostyuk, Alexander I. ; Raevskii, Roman I. ; Lanin, Aleksandr A. ; Fedotov, Andrei B. ; Belousov, Vsevolod V. ; Zheltikov, Aleksei M.</creatorcontrib><description>We present an experimental framework and methodology for in vivo studies on rat stroke models that enable a real‐time fiber‐optic recording of stroke‐induced hydrogen peroxide and pH transients in ischemia‐affected brain areas. Arrays of reconnectable implantable fiber probes combined with advanced optogenetic fluorescent protein sensors are shown to enable a quantitative multisite time‐resolved study of oxidative‐stress and acidosis buildup dynamics as the key markers, correlates and possible drivers of ischemic stroke. The fiber probes designed for this work provide a wavelength‐multiplex forward‐propagation channel for a spatially localized, dual‐pathway excitation of genetically encoded fluorescence‐protein sensors along with a back‐propagation channel for the fluorescence return from optically driven fluorescence sensors. We show that the spectral analysis of the fiber‐probe‐collected fluorescence return provides means for a high‐fidelity autofluorescence background subtraction, thus enhancing the sensitivity of real‐time detection of stroke‐induced transients and significantly reducing measurement uncertainties in in vivo acute‐stroke studies as inherently statistical experiments operating with outcomes of multiply repeated measurements on large populations of individually variable animal stroke models. We present an experimental framework and methodology for in vivo studies on rat stroke models that enable a real‐time fiber‐optic recording of stroke‐induced hydrogen peroxide and pH transients in ischemia‐affected brain areas. Arrays of reconnectable implantable fiber probes combined with advanced optogenetic fluorescent protein sensors are shown to enable a quantitative multisite time‐resolved study of oxidative‐stress and acidosis buildup dynamics as the key markers, correlates and possible drivers of ischemic stroke.</description><identifier>ISSN: 1864-063X</identifier><identifier>EISSN: 1864-0648</identifier><identifier>DOI: 10.1002/jbio.202200050</identifier><identifier>PMID: 35654757</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Acidosis ; Animal models ; Back propagation ; fiber‐optic probes ; Fluorescence ; fluorescent protein sensors ; Genetic code ; Hydrogen peroxide ; In vivo methods and tests ; Ischemia ; neurophotonics ; optogenetics ; Probes ; Proteins ; Recording ; Sensitivity enhancement ; Sensors ; Spectral analysis ; Spectrum analysis ; Stroke ; Subtraction ; Wave propagation</subject><ispartof>Journal of biophotonics, 2022-10, Vol.15 (10), p.e202200050-n/a</ispartof><rights>2022 Wiley‐VCH GmbH.</rights><rights>This article is protected by copyright. All rights reserved.</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-7548e09b0d6c440ad28c5626ff5c4bd0b2b2e9c6e7e1ed8f5907a71eb4e5c8f73</citedby><cites>FETCH-LOGICAL-c3730-7548e09b0d6c440ad28c5626ff5c4bd0b2b2e9c6e7e1ed8f5907a71eb4e5c8f73</cites><orcidid>0000-0002-9138-0576 ; 0000-0003-1166-071X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbio.202200050$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbio.202200050$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35654757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pochechuev, Matvey S.</creatorcontrib><creatorcontrib>Bilan, Dmitry S.</creatorcontrib><creatorcontrib>Fedotov, Ilya V.</creatorcontrib><creatorcontrib>Kelmanson, Ilya V.</creatorcontrib><creatorcontrib>Solotenkov, Maxim A.</creatorcontrib><creatorcontrib>Stepanov, Evgeny A.</creatorcontrib><creatorcontrib>Kotova, Daria A.</creatorcontrib><creatorcontrib>Ivanova, Alexandra D.</creatorcontrib><creatorcontrib>Kostyuk, Alexander I.</creatorcontrib><creatorcontrib>Raevskii, Roman I.</creatorcontrib><creatorcontrib>Lanin, Aleksandr A.</creatorcontrib><creatorcontrib>Fedotov, Andrei B.</creatorcontrib><creatorcontrib>Belousov, Vsevolod V.</creatorcontrib><creatorcontrib>Zheltikov, Aleksei M.</creatorcontrib><title>Real‐time fiber‐optic recording of acute‐ischemic‐stroke signatures</title><title>Journal of biophotonics</title><addtitle>J Biophotonics</addtitle><description>We present an experimental framework and methodology for in vivo studies on rat stroke models that enable a real‐time fiber‐optic recording of stroke‐induced hydrogen peroxide and pH transients in ischemia‐affected brain areas. Arrays of reconnectable implantable fiber probes combined with advanced optogenetic fluorescent protein sensors are shown to enable a quantitative multisite time‐resolved study of oxidative‐stress and acidosis buildup dynamics as the key markers, correlates and possible drivers of ischemic stroke. The fiber probes designed for this work provide a wavelength‐multiplex forward‐propagation channel for a spatially localized, dual‐pathway excitation of genetically encoded fluorescence‐protein sensors along with a back‐propagation channel for the fluorescence return from optically driven fluorescence sensors. We show that the spectral analysis of the fiber‐probe‐collected fluorescence return provides means for a high‐fidelity autofluorescence background subtraction, thus enhancing the sensitivity of real‐time detection of stroke‐induced transients and significantly reducing measurement uncertainties in in vivo acute‐stroke studies as inherently statistical experiments operating with outcomes of multiply repeated measurements on large populations of individually variable animal stroke models. We present an experimental framework and methodology for in vivo studies on rat stroke models that enable a real‐time fiber‐optic recording of stroke‐induced hydrogen peroxide and pH transients in ischemia‐affected brain areas. Arrays of reconnectable implantable fiber probes combined with advanced optogenetic fluorescent protein sensors are shown to enable a quantitative multisite time‐resolved study of oxidative‐stress and acidosis buildup dynamics as the key markers, correlates and possible drivers of ischemic stroke.</description><subject>Acidosis</subject><subject>Animal models</subject><subject>Back propagation</subject><subject>fiber‐optic probes</subject><subject>Fluorescence</subject><subject>fluorescent protein sensors</subject><subject>Genetic code</subject><subject>Hydrogen peroxide</subject><subject>In vivo methods and tests</subject><subject>Ischemia</subject><subject>neurophotonics</subject><subject>optogenetics</subject><subject>Probes</subject><subject>Proteins</subject><subject>Recording</subject><subject>Sensitivity enhancement</subject><subject>Sensors</subject><subject>Spectral analysis</subject><subject>Spectrum analysis</subject><subject>Stroke</subject><subject>Subtraction</subject><subject>Wave propagation</subject><issn>1864-063X</issn><issn>1864-0648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAUhYMojn9bl1Jw46bjbdIk7VIH_wcEUXAX2vRWM7bNmLSIOx_BZ_RJjIyO4MbVPZf73cPhELKbwDgBoIez0tgxBUoBgMMK2UgykcYg0mx1qdn9iGx6PwMQwDhbJyPGBU8llxvk6gaL5uPtvTctRrUp0YXFznujI4fausp0D5Gto0IPPYaT8foRW6OD9L2zTxh589AV_eDQb5O1umg87nzPLXJ3enI7OY-n12cXk6NprJlkEEueZgh5CZXQaQpFRTPNBRV1zXVaVlDSkmKuBUpMsMpqnoMsZIJlilxntWRb5GDhO3f2eUDfqzbEwqYpOrSDV1RIxrgEKQK6_wed2cF1IZ2ikoLgiaRJoMYLSjvrvcNazZ1pC_eqElBfNauvmtWy5vCw9207lC1WS_yn1wDkC-DFNPj6j526PL64_jX_BGFUjUs</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Pochechuev, Matvey S.</creator><creator>Bilan, Dmitry S.</creator><creator>Fedotov, Ilya V.</creator><creator>Kelmanson, Ilya V.</creator><creator>Solotenkov, Maxim A.</creator><creator>Stepanov, Evgeny A.</creator><creator>Kotova, Daria A.</creator><creator>Ivanova, Alexandra D.</creator><creator>Kostyuk, Alexander I.</creator><creator>Raevskii, Roman I.</creator><creator>Lanin, Aleksandr A.</creator><creator>Fedotov, Andrei B.</creator><creator>Belousov, Vsevolod V.</creator><creator>Zheltikov, Aleksei M.</creator><general>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9138-0576</orcidid><orcidid>https://orcid.org/0000-0003-1166-071X</orcidid></search><sort><creationdate>202210</creationdate><title>Real‐time fiber‐optic recording of acute‐ischemic‐stroke signatures</title><author>Pochechuev, Matvey S. ; Bilan, Dmitry S. ; Fedotov, Ilya V. ; Kelmanson, Ilya V. ; Solotenkov, Maxim A. ; Stepanov, Evgeny A. ; Kotova, Daria A. ; Ivanova, Alexandra D. ; Kostyuk, Alexander I. ; Raevskii, Roman I. ; Lanin, Aleksandr A. ; Fedotov, Andrei B. ; Belousov, Vsevolod V. ; Zheltikov, Aleksei M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-7548e09b0d6c440ad28c5626ff5c4bd0b2b2e9c6e7e1ed8f5907a71eb4e5c8f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acidosis</topic><topic>Animal models</topic><topic>Back propagation</topic><topic>fiber‐optic probes</topic><topic>Fluorescence</topic><topic>fluorescent protein sensors</topic><topic>Genetic code</topic><topic>Hydrogen peroxide</topic><topic>In vivo methods and tests</topic><topic>Ischemia</topic><topic>neurophotonics</topic><topic>optogenetics</topic><topic>Probes</topic><topic>Proteins</topic><topic>Recording</topic><topic>Sensitivity enhancement</topic><topic>Sensors</topic><topic>Spectral analysis</topic><topic>Spectrum analysis</topic><topic>Stroke</topic><topic>Subtraction</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pochechuev, Matvey S.</creatorcontrib><creatorcontrib>Bilan, Dmitry S.</creatorcontrib><creatorcontrib>Fedotov, Ilya V.</creatorcontrib><creatorcontrib>Kelmanson, Ilya V.</creatorcontrib><creatorcontrib>Solotenkov, Maxim A.</creatorcontrib><creatorcontrib>Stepanov, Evgeny A.</creatorcontrib><creatorcontrib>Kotova, Daria A.</creatorcontrib><creatorcontrib>Ivanova, Alexandra D.</creatorcontrib><creatorcontrib>Kostyuk, Alexander I.</creatorcontrib><creatorcontrib>Raevskii, Roman I.</creatorcontrib><creatorcontrib>Lanin, Aleksandr A.</creatorcontrib><creatorcontrib>Fedotov, Andrei B.</creatorcontrib><creatorcontrib>Belousov, Vsevolod V.</creatorcontrib><creatorcontrib>Zheltikov, Aleksei M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biophotonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pochechuev, Matvey S.</au><au>Bilan, Dmitry S.</au><au>Fedotov, Ilya V.</au><au>Kelmanson, Ilya V.</au><au>Solotenkov, Maxim A.</au><au>Stepanov, Evgeny A.</au><au>Kotova, Daria A.</au><au>Ivanova, Alexandra D.</au><au>Kostyuk, Alexander I.</au><au>Raevskii, Roman I.</au><au>Lanin, Aleksandr A.</au><au>Fedotov, Andrei B.</au><au>Belousov, Vsevolod V.</au><au>Zheltikov, Aleksei M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real‐time fiber‐optic recording of acute‐ischemic‐stroke signatures</atitle><jtitle>Journal of biophotonics</jtitle><addtitle>J Biophotonics</addtitle><date>2022-10</date><risdate>2022</risdate><volume>15</volume><issue>10</issue><spage>e202200050</spage><epage>n/a</epage><pages>e202200050-n/a</pages><issn>1864-063X</issn><eissn>1864-0648</eissn><abstract>We present an experimental framework and methodology for in vivo studies on rat stroke models that enable a real‐time fiber‐optic recording of stroke‐induced hydrogen peroxide and pH transients in ischemia‐affected brain areas. Arrays of reconnectable implantable fiber probes combined with advanced optogenetic fluorescent protein sensors are shown to enable a quantitative multisite time‐resolved study of oxidative‐stress and acidosis buildup dynamics as the key markers, correlates and possible drivers of ischemic stroke. The fiber probes designed for this work provide a wavelength‐multiplex forward‐propagation channel for a spatially localized, dual‐pathway excitation of genetically encoded fluorescence‐protein sensors along with a back‐propagation channel for the fluorescence return from optically driven fluorescence sensors. We show that the spectral analysis of the fiber‐probe‐collected fluorescence return provides means for a high‐fidelity autofluorescence background subtraction, thus enhancing the sensitivity of real‐time detection of stroke‐induced transients and significantly reducing measurement uncertainties in in vivo acute‐stroke studies as inherently statistical experiments operating with outcomes of multiply repeated measurements on large populations of individually variable animal stroke models. We present an experimental framework and methodology for in vivo studies on rat stroke models that enable a real‐time fiber‐optic recording of stroke‐induced hydrogen peroxide and pH transients in ischemia‐affected brain areas. Arrays of reconnectable implantable fiber probes combined with advanced optogenetic fluorescent protein sensors are shown to enable a quantitative multisite time‐resolved study of oxidative‐stress and acidosis buildup dynamics as the key markers, correlates and possible drivers of ischemic stroke.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>35654757</pmid><doi>10.1002/jbio.202200050</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9138-0576</orcidid><orcidid>https://orcid.org/0000-0003-1166-071X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-063X
ispartof Journal of biophotonics, 2022-10, Vol.15 (10), p.e202200050-n/a
issn 1864-063X
1864-0648
language eng
recordid cdi_proquest_miscellaneous_2673357076
source Access via Wiley Online Library
subjects Acidosis
Animal models
Back propagation
fiber‐optic probes
Fluorescence
fluorescent protein sensors
Genetic code
Hydrogen peroxide
In vivo methods and tests
Ischemia
neurophotonics
optogenetics
Probes
Proteins
Recording
Sensitivity enhancement
Sensors
Spectral analysis
Spectrum analysis
Stroke
Subtraction
Wave propagation
title Real‐time fiber‐optic recording of acute‐ischemic‐stroke signatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%E2%80%90time%20fiber%E2%80%90optic%20recording%20of%20acute%E2%80%90ischemic%E2%80%90stroke%20signatures&rft.jtitle=Journal%20of%20biophotonics&rft.au=Pochechuev,%20Matvey%20S.&rft.date=2022-10&rft.volume=15&rft.issue=10&rft.spage=e202200050&rft.epage=n/a&rft.pages=e202200050-n/a&rft.issn=1864-063X&rft.eissn=1864-0648&rft_id=info:doi/10.1002/jbio.202200050&rft_dat=%3Cproquest_cross%3E2673357076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720651721&rft_id=info:pmid/35654757&rfr_iscdi=true