Oxygen environment and metabolic oxygen demand predictably interact to affect thermal behavior in a lizard, Sceloporus occidentalis

The climate crisis necessitates predicting how organisms respond to changing environments, but this requires understanding the mechanisms underlying thermal tolerance. The Hierarchical Mechanisms of Thermal Limitation (HMTL) hypothesis proposes that respiratory capacity and marginal stability of pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental zoology. Part A, Ecological and integrative physiology Ecological and integrative physiology, 2022-08, Vol.337 (7), p.739-745
Hauptverfasser: Leibold, Dalton C., Gastelum, Jacob A., VandenBrooks, John M., Telemeco, Rory S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 745
container_issue 7
container_start_page 739
container_title Journal of experimental zoology. Part A, Ecological and integrative physiology
container_volume 337
creator Leibold, Dalton C.
Gastelum, Jacob A.
VandenBrooks, John M.
Telemeco, Rory S.
description The climate crisis necessitates predicting how organisms respond to changing environments, but this requires understanding the mechanisms underlying thermal tolerance. The Hierarchical Mechanisms of Thermal Limitation (HMTL) hypothesis proposes that respiratory capacity and marginal stability of proteins and membranes interact hierarchically to determine thermal performance and limits. An untested prediction of the HMTL hypothesis is that behavioral anapyrexia (i.e., reduced body temperature in hypoxia) is exacerbated when metabolic demand is high. We tested this prediction by manipulating western fence lizards' (Sceloporus occidentalis) metabolic demand and oxygen environment, then measuring selected body temperatures. Lizards with elevated metabolic demand selected lower body temperatures at higher oxygen concentrations than resting lizards, but this occurred only at oxygen concentrations
doi_str_mv 10.1002/jez.2630
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2672706558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691306750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2790-bd08144ee59cea141934121157b14b46e1a830b729471c5562f827286b9a7e223</originalsourceid><addsrcrecordid>eNp1kctKxTAQhoMoKir4BBJw48JqkubSLkW8IrhQN25Kmk41h7Q5Jq163Pri5ni8gOAqQ-bjmxl-hLYpOaCEsMMJvB0wmZMltM64opmQXC7_1HmxhrZinBBCaMEFJXIVreVCCsaZXEfv16-zB-gx9M82-L6DfsC6b3AHg669swb7BdBAN_-fBmisST03w7YfIGgz4MFj3bYwrx4hdNrhGh71s_UhMVhjZ990aPbxjQHnpz6MEXtjbJOGaWfjJlpptYuw9fVuoLvTk9vj8-zq-uzi-OgqM0yVJKsbUlDOAURpQFNOy5xTRqlQNeU1l0B1kZNasTJdboSQrC2YYoWsS62AsXwD7S280-CfRohD1dmYVnK6Bz_GiknFFJFCFAnd_YNO_Bj6tF2iSpoTqQT5FZrgYwzQVtNgOx1mFSXVPJsqZVPNs0nozpdwrDtofsDvJBKQLYAX62D2r6i6PLn_FH4AON6X6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691306750</pqid></control><display><type>article</type><title>Oxygen environment and metabolic oxygen demand predictably interact to affect thermal behavior in a lizard, Sceloporus occidentalis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Leibold, Dalton C. ; Gastelum, Jacob A. ; VandenBrooks, John M. ; Telemeco, Rory S.</creator><creatorcontrib>Leibold, Dalton C. ; Gastelum, Jacob A. ; VandenBrooks, John M. ; Telemeco, Rory S.</creatorcontrib><description>The climate crisis necessitates predicting how organisms respond to changing environments, but this requires understanding the mechanisms underlying thermal tolerance. The Hierarchical Mechanisms of Thermal Limitation (HMTL) hypothesis proposes that respiratory capacity and marginal stability of proteins and membranes interact hierarchically to determine thermal performance and limits. An untested prediction of the HMTL hypothesis is that behavioral anapyrexia (i.e., reduced body temperature in hypoxia) is exacerbated when metabolic demand is high. We tested this prediction by manipulating western fence lizards' (Sceloporus occidentalis) metabolic demand and oxygen environment, then measuring selected body temperatures. Lizards with elevated metabolic demand selected lower body temperatures at higher oxygen concentrations than resting lizards, but this occurred only at oxygen concentrations &lt;12% O2, suggesting thermal limits are unaffected by naturally‐occurring oxygen variation. Given our results and the ubiquity of behavioral anapyrexia, the HMTL hypothesis may generally explain how oxygen and temperature interactively affect reptile performance. Sceloporus occidentalis select reduced body temperatures at oxygen concentrations less than 6%, but experimentally increasing their resting oxygen demand induced selection of lower temperatures at 10% oxygen. Our findings support the recent Hierarchical Mechanisms of Thermal Limitation hypothesis proposing that the mechanisms controlling thermal limits change under different ecological contexts. Research Highlights Increased metabolic oxygen demand induced Sceloporus occidentalis to select lower body temperatures when exposed to hypoxia. Our observations suggest that the mechanisms controlling lizard thermal behavior are context‐dependent.</description><identifier>ISSN: 2471-5638</identifier><identifier>EISSN: 2471-5646</identifier><identifier>DOI: 10.1002/jez.2630</identifier><identifier>PMID: 35652426</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>aerobic scope ; Behavior ; behavioral anapyrexia ; Body temperature ; Changing environments ; Climate prediction ; Hypotheses ; Hypoxia ; Lizards ; Membranes ; Metabolism ; Oxygen ; Oxygen demand ; Oxygen requirement ; Reptiles ; Sceloporus occidentalis ; Temperature tolerance ; Thermal stress ; thermal tolerance ; Thermodynamic properties</subject><ispartof>Journal of experimental zoology. Part A, Ecological and integrative physiology, 2022-08, Vol.337 (7), p.739-745</ispartof><rights>2022 Wiley Periodicals LLC.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2790-bd08144ee59cea141934121157b14b46e1a830b729471c5562f827286b9a7e223</citedby><cites>FETCH-LOGICAL-c2790-bd08144ee59cea141934121157b14b46e1a830b729471c5562f827286b9a7e223</cites><orcidid>0000-0001-9645-2033 ; 0000-0002-0767-8565</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjez.2630$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjez.2630$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35652426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leibold, Dalton C.</creatorcontrib><creatorcontrib>Gastelum, Jacob A.</creatorcontrib><creatorcontrib>VandenBrooks, John M.</creatorcontrib><creatorcontrib>Telemeco, Rory S.</creatorcontrib><title>Oxygen environment and metabolic oxygen demand predictably interact to affect thermal behavior in a lizard, Sceloporus occidentalis</title><title>Journal of experimental zoology. Part A, Ecological and integrative physiology</title><addtitle>J Exp Zool A Ecol Integr Physiol</addtitle><description>The climate crisis necessitates predicting how organisms respond to changing environments, but this requires understanding the mechanisms underlying thermal tolerance. The Hierarchical Mechanisms of Thermal Limitation (HMTL) hypothesis proposes that respiratory capacity and marginal stability of proteins and membranes interact hierarchically to determine thermal performance and limits. An untested prediction of the HMTL hypothesis is that behavioral anapyrexia (i.e., reduced body temperature in hypoxia) is exacerbated when metabolic demand is high. We tested this prediction by manipulating western fence lizards' (Sceloporus occidentalis) metabolic demand and oxygen environment, then measuring selected body temperatures. Lizards with elevated metabolic demand selected lower body temperatures at higher oxygen concentrations than resting lizards, but this occurred only at oxygen concentrations &lt;12% O2, suggesting thermal limits are unaffected by naturally‐occurring oxygen variation. Given our results and the ubiquity of behavioral anapyrexia, the HMTL hypothesis may generally explain how oxygen and temperature interactively affect reptile performance. Sceloporus occidentalis select reduced body temperatures at oxygen concentrations less than 6%, but experimentally increasing their resting oxygen demand induced selection of lower temperatures at 10% oxygen. Our findings support the recent Hierarchical Mechanisms of Thermal Limitation hypothesis proposing that the mechanisms controlling thermal limits change under different ecological contexts. Research Highlights Increased metabolic oxygen demand induced Sceloporus occidentalis to select lower body temperatures when exposed to hypoxia. Our observations suggest that the mechanisms controlling lizard thermal behavior are context‐dependent.</description><subject>aerobic scope</subject><subject>Behavior</subject><subject>behavioral anapyrexia</subject><subject>Body temperature</subject><subject>Changing environments</subject><subject>Climate prediction</subject><subject>Hypotheses</subject><subject>Hypoxia</subject><subject>Lizards</subject><subject>Membranes</subject><subject>Metabolism</subject><subject>Oxygen</subject><subject>Oxygen demand</subject><subject>Oxygen requirement</subject><subject>Reptiles</subject><subject>Sceloporus occidentalis</subject><subject>Temperature tolerance</subject><subject>Thermal stress</subject><subject>thermal tolerance</subject><subject>Thermodynamic properties</subject><issn>2471-5638</issn><issn>2471-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kctKxTAQhoMoKir4BBJw48JqkubSLkW8IrhQN25Kmk41h7Q5Jq163Pri5ni8gOAqQ-bjmxl-hLYpOaCEsMMJvB0wmZMltM64opmQXC7_1HmxhrZinBBCaMEFJXIVreVCCsaZXEfv16-zB-gx9M82-L6DfsC6b3AHg669swb7BdBAN_-fBmisST03w7YfIGgz4MFj3bYwrx4hdNrhGh71s_UhMVhjZ990aPbxjQHnpz6MEXtjbJOGaWfjJlpptYuw9fVuoLvTk9vj8-zq-uzi-OgqM0yVJKsbUlDOAURpQFNOy5xTRqlQNeU1l0B1kZNasTJdboSQrC2YYoWsS62AsXwD7S280-CfRohD1dmYVnK6Bz_GiknFFJFCFAnd_YNO_Bj6tF2iSpoTqQT5FZrgYwzQVtNgOx1mFSXVPJsqZVPNs0nozpdwrDtofsDvJBKQLYAX62D2r6i6PLn_FH4AON6X6g</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Leibold, Dalton C.</creator><creator>Gastelum, Jacob A.</creator><creator>VandenBrooks, John M.</creator><creator>Telemeco, Rory S.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9645-2033</orcidid><orcidid>https://orcid.org/0000-0002-0767-8565</orcidid></search><sort><creationdate>20220801</creationdate><title>Oxygen environment and metabolic oxygen demand predictably interact to affect thermal behavior in a lizard, Sceloporus occidentalis</title><author>Leibold, Dalton C. ; Gastelum, Jacob A. ; VandenBrooks, John M. ; Telemeco, Rory S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2790-bd08144ee59cea141934121157b14b46e1a830b729471c5562f827286b9a7e223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>aerobic scope</topic><topic>Behavior</topic><topic>behavioral anapyrexia</topic><topic>Body temperature</topic><topic>Changing environments</topic><topic>Climate prediction</topic><topic>Hypotheses</topic><topic>Hypoxia</topic><topic>Lizards</topic><topic>Membranes</topic><topic>Metabolism</topic><topic>Oxygen</topic><topic>Oxygen demand</topic><topic>Oxygen requirement</topic><topic>Reptiles</topic><topic>Sceloporus occidentalis</topic><topic>Temperature tolerance</topic><topic>Thermal stress</topic><topic>thermal tolerance</topic><topic>Thermodynamic properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Leibold, Dalton C.</creatorcontrib><creatorcontrib>Gastelum, Jacob A.</creatorcontrib><creatorcontrib>VandenBrooks, John M.</creatorcontrib><creatorcontrib>Telemeco, Rory S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of experimental zoology. Part A, Ecological and integrative physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leibold, Dalton C.</au><au>Gastelum, Jacob A.</au><au>VandenBrooks, John M.</au><au>Telemeco, Rory S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen environment and metabolic oxygen demand predictably interact to affect thermal behavior in a lizard, Sceloporus occidentalis</atitle><jtitle>Journal of experimental zoology. Part A, Ecological and integrative physiology</jtitle><addtitle>J Exp Zool A Ecol Integr Physiol</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>337</volume><issue>7</issue><spage>739</spage><epage>745</epage><pages>739-745</pages><issn>2471-5638</issn><eissn>2471-5646</eissn><abstract>The climate crisis necessitates predicting how organisms respond to changing environments, but this requires understanding the mechanisms underlying thermal tolerance. The Hierarchical Mechanisms of Thermal Limitation (HMTL) hypothesis proposes that respiratory capacity and marginal stability of proteins and membranes interact hierarchically to determine thermal performance and limits. An untested prediction of the HMTL hypothesis is that behavioral anapyrexia (i.e., reduced body temperature in hypoxia) is exacerbated when metabolic demand is high. We tested this prediction by manipulating western fence lizards' (Sceloporus occidentalis) metabolic demand and oxygen environment, then measuring selected body temperatures. Lizards with elevated metabolic demand selected lower body temperatures at higher oxygen concentrations than resting lizards, but this occurred only at oxygen concentrations &lt;12% O2, suggesting thermal limits are unaffected by naturally‐occurring oxygen variation. Given our results and the ubiquity of behavioral anapyrexia, the HMTL hypothesis may generally explain how oxygen and temperature interactively affect reptile performance. Sceloporus occidentalis select reduced body temperatures at oxygen concentrations less than 6%, but experimentally increasing their resting oxygen demand induced selection of lower temperatures at 10% oxygen. Our findings support the recent Hierarchical Mechanisms of Thermal Limitation hypothesis proposing that the mechanisms controlling thermal limits change under different ecological contexts. Research Highlights Increased metabolic oxygen demand induced Sceloporus occidentalis to select lower body temperatures when exposed to hypoxia. Our observations suggest that the mechanisms controlling lizard thermal behavior are context‐dependent.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35652426</pmid><doi>10.1002/jez.2630</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9645-2033</orcidid><orcidid>https://orcid.org/0000-0002-0767-8565</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2471-5638
ispartof Journal of experimental zoology. Part A, Ecological and integrative physiology, 2022-08, Vol.337 (7), p.739-745
issn 2471-5638
2471-5646
language eng
recordid cdi_proquest_miscellaneous_2672706558
source Wiley Online Library Journals Frontfile Complete
subjects aerobic scope
Behavior
behavioral anapyrexia
Body temperature
Changing environments
Climate prediction
Hypotheses
Hypoxia
Lizards
Membranes
Metabolism
Oxygen
Oxygen demand
Oxygen requirement
Reptiles
Sceloporus occidentalis
Temperature tolerance
Thermal stress
thermal tolerance
Thermodynamic properties
title Oxygen environment and metabolic oxygen demand predictably interact to affect thermal behavior in a lizard, Sceloporus occidentalis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20environment%20and%20metabolic%20oxygen%20demand%20predictably%20interact%20to%20affect%20thermal%20behavior%20in%20a%20lizard,%20Sceloporus%20occidentalis&rft.jtitle=Journal%20of%20experimental%20zoology.%20Part%20A,%20Ecological%20and%20integrative%20physiology&rft.au=Leibold,%20Dalton%20C.&rft.date=2022-08-01&rft.volume=337&rft.issue=7&rft.spage=739&rft.epage=745&rft.pages=739-745&rft.issn=2471-5638&rft.eissn=2471-5646&rft_id=info:doi/10.1002/jez.2630&rft_dat=%3Cproquest_cross%3E2691306750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691306750&rft_id=info:pmid/35652426&rfr_iscdi=true