Calculating and Optimizing Physicochemical Property Distributions of Large Combinatorial Fragment Spaces
The distributions of physicochemical property values, like the octanol–water partition coefficient, are routinely calculated to describe and compare virtual chemical libraries. Traditionally, these distributions are derived by processing each member of a library individually and summarizing all valu...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2022-06, Vol.62 (11), p.2800-2810 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2810 |
---|---|
container_issue | 11 |
container_start_page | 2800 |
container_title | Journal of chemical information and modeling |
container_volume | 62 |
creator | Bellmann, Louis Klein, Raphael Rarey, Matthias |
description | The distributions of physicochemical property values, like the octanol–water partition coefficient, are routinely calculated to describe and compare virtual chemical libraries. Traditionally, these distributions are derived by processing each member of a library individually and summarizing all values in a distribution. This process becomes impractical when operating on chemical spaces which surpass billions of compounds in size. In this work, we present a novel algorithmic method called SpaceProp for the property distribution calculation of large nonenumerable combinatorial fragment spaces. The novel method follows a combinatorial approach and is able to calculate physicochemical property distributions of prominent spaces like Enamine’s REAL Space, WuXi’s GalaXi Space, and OTAVA’s CHEMriya Space for the first time. Furthermore, we present a first approach of optimizing property distributions directly in combinatorial fragment spaces. |
doi_str_mv | 10.1021/acs.jcim.2c00334 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2672703171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681897977</sourcerecordid><originalsourceid>FETCH-LOGICAL-a279t-66b76e276492abf8d4ff5cc570dd70808e6de46c92b6a9b205743117f4d401f53</originalsourceid><addsrcrecordid>eNp1kcFLwzAUxoMobk7vniTgxYOdSdomzVGqU2GwgQreSpqmW0bb1CQ9zL_e1m0eBE_vPfh933u8D4BLjKYYEXwnpJtupK6nRCIUhtERGOM44gGn6OP40MecjsCZc5sB4ZScglEY0zgkJBmDdSoq2VXC62YFRVPARet1rb-GcbneOi2NXKtaS1HBpTWtsn4LH7TzVued16Zx0JRwLuxKwdTUuW6EN1b39MyKVa0aD19bIZU7ByelqJy62NcJeJ89vqXPwXzx9JLezwNBGPcBpTmjijAacSLyMimisoyljBkqCoYSlChaqIhKTnIqeE5QzKIQY1ZGRYRwGYcTcLPzba357JTzWa2dVFUlGmU6lxHKCEMhZrhHr_-gG9PZpr-upxKccMYZ6ym0o6Q1zllVZq3VtbDbDKNsSCHrU8iGFLJ9Cr3kam_c5bUqfgWHt_fA7Q74kR6W_uv3DU_RlBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681897977</pqid></control><display><type>article</type><title>Calculating and Optimizing Physicochemical Property Distributions of Large Combinatorial Fragment Spaces</title><source>ACS Publications</source><creator>Bellmann, Louis ; Klein, Raphael ; Rarey, Matthias</creator><creatorcontrib>Bellmann, Louis ; Klein, Raphael ; Rarey, Matthias</creatorcontrib><description>The distributions of physicochemical property values, like the octanol–water partition coefficient, are routinely calculated to describe and compare virtual chemical libraries. Traditionally, these distributions are derived by processing each member of a library individually and summarizing all values in a distribution. This process becomes impractical when operating on chemical spaces which surpass billions of compounds in size. In this work, we present a novel algorithmic method called SpaceProp for the property distribution calculation of large nonenumerable combinatorial fragment spaces. The novel method follows a combinatorial approach and is able to calculate physicochemical property distributions of prominent spaces like Enamine’s REAL Space, WuXi’s GalaXi Space, and OTAVA’s CHEMriya Space for the first time. Furthermore, we present a first approach of optimizing property distributions directly in combinatorial fragment spaces.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.2c00334</identifier><identifier>PMID: 35653228</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Combinatorial analysis ; Computational Chemistry ; Mathematical analysis ; Property values</subject><ispartof>Journal of chemical information and modeling, 2022-06, Vol.62 (11), p.2800-2810</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Jun 13, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a279t-66b76e276492abf8d4ff5cc570dd70808e6de46c92b6a9b205743117f4d401f53</citedby><cites>FETCH-LOGICAL-a279t-66b76e276492abf8d4ff5cc570dd70808e6de46c92b6a9b205743117f4d401f53</cites><orcidid>0000-0002-7920-1889 ; 0000-0002-9553-6531 ; 0000-0002-5087-8730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.2c00334$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.2c00334$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35653228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellmann, Louis</creatorcontrib><creatorcontrib>Klein, Raphael</creatorcontrib><creatorcontrib>Rarey, Matthias</creatorcontrib><title>Calculating and Optimizing Physicochemical Property Distributions of Large Combinatorial Fragment Spaces</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>The distributions of physicochemical property values, like the octanol–water partition coefficient, are routinely calculated to describe and compare virtual chemical libraries. Traditionally, these distributions are derived by processing each member of a library individually and summarizing all values in a distribution. This process becomes impractical when operating on chemical spaces which surpass billions of compounds in size. In this work, we present a novel algorithmic method called SpaceProp for the property distribution calculation of large nonenumerable combinatorial fragment spaces. The novel method follows a combinatorial approach and is able to calculate physicochemical property distributions of prominent spaces like Enamine’s REAL Space, WuXi’s GalaXi Space, and OTAVA’s CHEMriya Space for the first time. Furthermore, we present a first approach of optimizing property distributions directly in combinatorial fragment spaces.</description><subject>Combinatorial analysis</subject><subject>Computational Chemistry</subject><subject>Mathematical analysis</subject><subject>Property values</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kcFLwzAUxoMobk7vniTgxYOdSdomzVGqU2GwgQreSpqmW0bb1CQ9zL_e1m0eBE_vPfh933u8D4BLjKYYEXwnpJtupK6nRCIUhtERGOM44gGn6OP40MecjsCZc5sB4ZScglEY0zgkJBmDdSoq2VXC62YFRVPARet1rb-GcbneOi2NXKtaS1HBpTWtsn4LH7TzVued16Zx0JRwLuxKwdTUuW6EN1b39MyKVa0aD19bIZU7ByelqJy62NcJeJ89vqXPwXzx9JLezwNBGPcBpTmjijAacSLyMimisoyljBkqCoYSlChaqIhKTnIqeE5QzKIQY1ZGRYRwGYcTcLPzba357JTzWa2dVFUlGmU6lxHKCEMhZrhHr_-gG9PZpr-upxKccMYZ6ym0o6Q1zllVZq3VtbDbDKNsSCHrU8iGFLJ9Cr3kam_c5bUqfgWHt_fA7Q74kR6W_uv3DU_RlBo</recordid><startdate>20220613</startdate><enddate>20220613</enddate><creator>Bellmann, Louis</creator><creator>Klein, Raphael</creator><creator>Rarey, Matthias</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7920-1889</orcidid><orcidid>https://orcid.org/0000-0002-9553-6531</orcidid><orcidid>https://orcid.org/0000-0002-5087-8730</orcidid></search><sort><creationdate>20220613</creationdate><title>Calculating and Optimizing Physicochemical Property Distributions of Large Combinatorial Fragment Spaces</title><author>Bellmann, Louis ; Klein, Raphael ; Rarey, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a279t-66b76e276492abf8d4ff5cc570dd70808e6de46c92b6a9b205743117f4d401f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorial analysis</topic><topic>Computational Chemistry</topic><topic>Mathematical analysis</topic><topic>Property values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellmann, Louis</creatorcontrib><creatorcontrib>Klein, Raphael</creatorcontrib><creatorcontrib>Rarey, Matthias</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellmann, Louis</au><au>Klein, Raphael</au><au>Rarey, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculating and Optimizing Physicochemical Property Distributions of Large Combinatorial Fragment Spaces</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2022-06-13</date><risdate>2022</risdate><volume>62</volume><issue>11</issue><spage>2800</spage><epage>2810</epage><pages>2800-2810</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>The distributions of physicochemical property values, like the octanol–water partition coefficient, are routinely calculated to describe and compare virtual chemical libraries. Traditionally, these distributions are derived by processing each member of a library individually and summarizing all values in a distribution. This process becomes impractical when operating on chemical spaces which surpass billions of compounds in size. In this work, we present a novel algorithmic method called SpaceProp for the property distribution calculation of large nonenumerable combinatorial fragment spaces. The novel method follows a combinatorial approach and is able to calculate physicochemical property distributions of prominent spaces like Enamine’s REAL Space, WuXi’s GalaXi Space, and OTAVA’s CHEMriya Space for the first time. Furthermore, we present a first approach of optimizing property distributions directly in combinatorial fragment spaces.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35653228</pmid><doi>10.1021/acs.jcim.2c00334</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7920-1889</orcidid><orcidid>https://orcid.org/0000-0002-9553-6531</orcidid><orcidid>https://orcid.org/0000-0002-5087-8730</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2022-06, Vol.62 (11), p.2800-2810 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2672703171 |
source | ACS Publications |
subjects | Combinatorial analysis Computational Chemistry Mathematical analysis Property values |
title | Calculating and Optimizing Physicochemical Property Distributions of Large Combinatorial Fragment Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T10%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculating%20and%20Optimizing%20Physicochemical%20Property%20Distributions%20of%20Large%20Combinatorial%20Fragment%20Spaces&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Bellmann,%20Louis&rft.date=2022-06-13&rft.volume=62&rft.issue=11&rft.spage=2800&rft.epage=2810&rft.pages=2800-2810&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.2c00334&rft_dat=%3Cproquest_cross%3E2681897977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681897977&rft_id=info:pmid/35653228&rfr_iscdi=true |