Calculating and Optimizing Physicochemical Property Distributions of Large Combinatorial Fragment Spaces

The distributions of physicochemical property values, like the octanol–water partition coefficient, are routinely calculated to describe and compare virtual chemical libraries. Traditionally, these distributions are derived by processing each member of a library individually and summarizing all valu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2022-06, Vol.62 (11), p.2800-2810
Hauptverfasser: Bellmann, Louis, Klein, Raphael, Rarey, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2810
container_issue 11
container_start_page 2800
container_title Journal of chemical information and modeling
container_volume 62
creator Bellmann, Louis
Klein, Raphael
Rarey, Matthias
description The distributions of physicochemical property values, like the octanol–water partition coefficient, are routinely calculated to describe and compare virtual chemical libraries. Traditionally, these distributions are derived by processing each member of a library individually and summarizing all values in a distribution. This process becomes impractical when operating on chemical spaces which surpass billions of compounds in size. In this work, we present a novel algorithmic method called SpaceProp for the property distribution calculation of large nonenumerable combinatorial fragment spaces. The novel method follows a combinatorial approach and is able to calculate physicochemical property distributions of prominent spaces like Enamine’s REAL Space, WuXi’s GalaXi Space, and OTAVA’s CHEMriya Space for the first time. Furthermore, we present a first approach of optimizing property distributions directly in combinatorial fragment spaces.
doi_str_mv 10.1021/acs.jcim.2c00334
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2672703171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681897977</sourcerecordid><originalsourceid>FETCH-LOGICAL-a279t-66b76e276492abf8d4ff5cc570dd70808e6de46c92b6a9b205743117f4d401f53</originalsourceid><addsrcrecordid>eNp1kcFLwzAUxoMobk7vniTgxYOdSdomzVGqU2GwgQreSpqmW0bb1CQ9zL_e1m0eBE_vPfh933u8D4BLjKYYEXwnpJtupK6nRCIUhtERGOM44gGn6OP40MecjsCZc5sB4ZScglEY0zgkJBmDdSoq2VXC62YFRVPARet1rb-GcbneOi2NXKtaS1HBpTWtsn4LH7TzVued16Zx0JRwLuxKwdTUuW6EN1b39MyKVa0aD19bIZU7ByelqJy62NcJeJ89vqXPwXzx9JLezwNBGPcBpTmjijAacSLyMimisoyljBkqCoYSlChaqIhKTnIqeE5QzKIQY1ZGRYRwGYcTcLPzba357JTzWa2dVFUlGmU6lxHKCEMhZrhHr_-gG9PZpr-upxKccMYZ6ym0o6Q1zllVZq3VtbDbDKNsSCHrU8iGFLJ9Cr3kam_c5bUqfgWHt_fA7Q74kR6W_uv3DU_RlBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681897977</pqid></control><display><type>article</type><title>Calculating and Optimizing Physicochemical Property Distributions of Large Combinatorial Fragment Spaces</title><source>ACS Publications</source><creator>Bellmann, Louis ; Klein, Raphael ; Rarey, Matthias</creator><creatorcontrib>Bellmann, Louis ; Klein, Raphael ; Rarey, Matthias</creatorcontrib><description>The distributions of physicochemical property values, like the octanol–water partition coefficient, are routinely calculated to describe and compare virtual chemical libraries. Traditionally, these distributions are derived by processing each member of a library individually and summarizing all values in a distribution. This process becomes impractical when operating on chemical spaces which surpass billions of compounds in size. In this work, we present a novel algorithmic method called SpaceProp for the property distribution calculation of large nonenumerable combinatorial fragment spaces. The novel method follows a combinatorial approach and is able to calculate physicochemical property distributions of prominent spaces like Enamine’s REAL Space, WuXi’s GalaXi Space, and OTAVA’s CHEMriya Space for the first time. Furthermore, we present a first approach of optimizing property distributions directly in combinatorial fragment spaces.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.2c00334</identifier><identifier>PMID: 35653228</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Combinatorial analysis ; Computational Chemistry ; Mathematical analysis ; Property values</subject><ispartof>Journal of chemical information and modeling, 2022-06, Vol.62 (11), p.2800-2810</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Jun 13, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a279t-66b76e276492abf8d4ff5cc570dd70808e6de46c92b6a9b205743117f4d401f53</citedby><cites>FETCH-LOGICAL-a279t-66b76e276492abf8d4ff5cc570dd70808e6de46c92b6a9b205743117f4d401f53</cites><orcidid>0000-0002-7920-1889 ; 0000-0002-9553-6531 ; 0000-0002-5087-8730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.2c00334$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.2c00334$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35653228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bellmann, Louis</creatorcontrib><creatorcontrib>Klein, Raphael</creatorcontrib><creatorcontrib>Rarey, Matthias</creatorcontrib><title>Calculating and Optimizing Physicochemical Property Distributions of Large Combinatorial Fragment Spaces</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>The distributions of physicochemical property values, like the octanol–water partition coefficient, are routinely calculated to describe and compare virtual chemical libraries. Traditionally, these distributions are derived by processing each member of a library individually and summarizing all values in a distribution. This process becomes impractical when operating on chemical spaces which surpass billions of compounds in size. In this work, we present a novel algorithmic method called SpaceProp for the property distribution calculation of large nonenumerable combinatorial fragment spaces. The novel method follows a combinatorial approach and is able to calculate physicochemical property distributions of prominent spaces like Enamine’s REAL Space, WuXi’s GalaXi Space, and OTAVA’s CHEMriya Space for the first time. Furthermore, we present a first approach of optimizing property distributions directly in combinatorial fragment spaces.</description><subject>Combinatorial analysis</subject><subject>Computational Chemistry</subject><subject>Mathematical analysis</subject><subject>Property values</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kcFLwzAUxoMobk7vniTgxYOdSdomzVGqU2GwgQreSpqmW0bb1CQ9zL_e1m0eBE_vPfh933u8D4BLjKYYEXwnpJtupK6nRCIUhtERGOM44gGn6OP40MecjsCZc5sB4ZScglEY0zgkJBmDdSoq2VXC62YFRVPARet1rb-GcbneOi2NXKtaS1HBpTWtsn4LH7TzVued16Zx0JRwLuxKwdTUuW6EN1b39MyKVa0aD19bIZU7ByelqJy62NcJeJ89vqXPwXzx9JLezwNBGPcBpTmjijAacSLyMimisoyljBkqCoYSlChaqIhKTnIqeE5QzKIQY1ZGRYRwGYcTcLPzba357JTzWa2dVFUlGmU6lxHKCEMhZrhHr_-gG9PZpr-upxKccMYZ6ym0o6Q1zllVZq3VtbDbDKNsSCHrU8iGFLJ9Cr3kam_c5bUqfgWHt_fA7Q74kR6W_uv3DU_RlBo</recordid><startdate>20220613</startdate><enddate>20220613</enddate><creator>Bellmann, Louis</creator><creator>Klein, Raphael</creator><creator>Rarey, Matthias</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7920-1889</orcidid><orcidid>https://orcid.org/0000-0002-9553-6531</orcidid><orcidid>https://orcid.org/0000-0002-5087-8730</orcidid></search><sort><creationdate>20220613</creationdate><title>Calculating and Optimizing Physicochemical Property Distributions of Large Combinatorial Fragment Spaces</title><author>Bellmann, Louis ; Klein, Raphael ; Rarey, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a279t-66b76e276492abf8d4ff5cc570dd70808e6de46c92b6a9b205743117f4d401f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Combinatorial analysis</topic><topic>Computational Chemistry</topic><topic>Mathematical analysis</topic><topic>Property values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellmann, Louis</creatorcontrib><creatorcontrib>Klein, Raphael</creatorcontrib><creatorcontrib>Rarey, Matthias</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellmann, Louis</au><au>Klein, Raphael</au><au>Rarey, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calculating and Optimizing Physicochemical Property Distributions of Large Combinatorial Fragment Spaces</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2022-06-13</date><risdate>2022</risdate><volume>62</volume><issue>11</issue><spage>2800</spage><epage>2810</epage><pages>2800-2810</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>The distributions of physicochemical property values, like the octanol–water partition coefficient, are routinely calculated to describe and compare virtual chemical libraries. Traditionally, these distributions are derived by processing each member of a library individually and summarizing all values in a distribution. This process becomes impractical when operating on chemical spaces which surpass billions of compounds in size. In this work, we present a novel algorithmic method called SpaceProp for the property distribution calculation of large nonenumerable combinatorial fragment spaces. The novel method follows a combinatorial approach and is able to calculate physicochemical property distributions of prominent spaces like Enamine’s REAL Space, WuXi’s GalaXi Space, and OTAVA’s CHEMriya Space for the first time. Furthermore, we present a first approach of optimizing property distributions directly in combinatorial fragment spaces.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35653228</pmid><doi>10.1021/acs.jcim.2c00334</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7920-1889</orcidid><orcidid>https://orcid.org/0000-0002-9553-6531</orcidid><orcidid>https://orcid.org/0000-0002-5087-8730</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2022-06, Vol.62 (11), p.2800-2810
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2672703171
source ACS Publications
subjects Combinatorial analysis
Computational Chemistry
Mathematical analysis
Property values
title Calculating and Optimizing Physicochemical Property Distributions of Large Combinatorial Fragment Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T10%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calculating%20and%20Optimizing%20Physicochemical%20Property%20Distributions%20of%20Large%20Combinatorial%20Fragment%20Spaces&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Bellmann,%20Louis&rft.date=2022-06-13&rft.volume=62&rft.issue=11&rft.spage=2800&rft.epage=2810&rft.pages=2800-2810&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.2c00334&rft_dat=%3Cproquest_cross%3E2681897977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681897977&rft_id=info:pmid/35653228&rfr_iscdi=true