Metabolic interactions between disease-transmitting vectors and their microbiota
Disease-transmitting vectors are living organisms that pass infectious agents from one animal/human to another. The epidemiologically important vectors are usually hematophagous arthropods, including mosquitoes, ticks, triatome bugs, sand flies, and tsetse flies. All of them harbor an endogenous mic...
Gespeichert in:
Veröffentlicht in: | Trends in parasitology 2022-08, Vol.38 (8), p.697-708 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 708 |
---|---|
container_issue | 8 |
container_start_page | 697 |
container_title | Trends in parasitology |
container_volume | 38 |
creator | Song, Xiumei Zhong, Zhengwei Gao, Li Weiss, Brian L. Wang, Jingwen |
description | Disease-transmitting vectors are living organisms that pass infectious agents from one animal/human to another. The epidemiologically important vectors are usually hematophagous arthropods, including mosquitoes, ticks, triatome bugs, sand flies, and tsetse flies. All of them harbor an endogenous microbiota that functionally complements their host’s biology. Different arthropod vectors are ecologically and behaviorally distinct, and as such, their relationships with symbiotic microbes vary. In this review, we summarize the recent discoveries that reveal how bacterial metabolic activities influence development, nutrition, and pathogen defense in mosquitoes, ticks, triatome bugs, and sand flies. These studies provide a foundation for a systematic understanding of vector–microbiota interactions and for the development of integrated approaches to control vector-borne diseases.
Vectors transmit a variety of infectious pathogens that threaten animal and human health.The different life cycles, feeding habits, and habitats of these vectors lead to their association with diverse symbiotic microorganisms.Metabolic interactions between symbiotic microbes and vectors profoundly influence multiple aspects of vector biology.Harnessing and manipulating vector–microbe symbioses can provide potential targets for vector control. |
doi_str_mv | 10.1016/j.pt.2022.05.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2672323638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1471492222001052</els_id><sourcerecordid>2672323638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-18381843f5c5769a2600a525df054530b98c29abf931ea77541006ef0b55fa203</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwM6GMLAlnO44TNlTxJRXBALPlOBdwlTjFdov496RqYWO6G5731d1DyDmFjAItrpbZKmYMGMtAZADsgExpLmkqAOThfs8rxibkJIQlABVSVsdkwkWR81LwKXl5wqjrobMmsS6i1ybawYWkxviF6JLGBtQB0-i1C72N0br3ZIMmDj4k2jVJ_EDrk94aP9R2iPqUHLW6C3i2nzPydnf7On9IF8_3j_ObRWp4xWJKS17SMuetMEIWlWYFgBZMNC2IXHCoq9KwStdtxSlqKUVOAQpsoRai1Qz4jFzueld--FxjiKq3wWDXaYfDOihWSMYZL3g5orBDxxtD8Niqlbe99t-Kgtp6VEu1imrrUYFQo8cxcrFvX9c9Nn-BX3EjcL0DcPxxY9GrYCw6g431ox3VDPb_9h9kAIJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672323638</pqid></control><display><type>article</type><title>Metabolic interactions between disease-transmitting vectors and their microbiota</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Song, Xiumei ; Zhong, Zhengwei ; Gao, Li ; Weiss, Brian L. ; Wang, Jingwen</creator><creatorcontrib>Song, Xiumei ; Zhong, Zhengwei ; Gao, Li ; Weiss, Brian L. ; Wang, Jingwen</creatorcontrib><description>Disease-transmitting vectors are living organisms that pass infectious agents from one animal/human to another. The epidemiologically important vectors are usually hematophagous arthropods, including mosquitoes, ticks, triatome bugs, sand flies, and tsetse flies. All of them harbor an endogenous microbiota that functionally complements their host’s biology. Different arthropod vectors are ecologically and behaviorally distinct, and as such, their relationships with symbiotic microbes vary. In this review, we summarize the recent discoveries that reveal how bacterial metabolic activities influence development, nutrition, and pathogen defense in mosquitoes, ticks, triatome bugs, and sand flies. These studies provide a foundation for a systematic understanding of vector–microbiota interactions and for the development of integrated approaches to control vector-borne diseases.
Vectors transmit a variety of infectious pathogens that threaten animal and human health.The different life cycles, feeding habits, and habitats of these vectors lead to their association with diverse symbiotic microorganisms.Metabolic interactions between symbiotic microbes and vectors profoundly influence multiple aspects of vector biology.Harnessing and manipulating vector–microbe symbioses can provide potential targets for vector control.</description><identifier>ISSN: 1471-4922</identifier><identifier>EISSN: 1471-5007</identifier><identifier>DOI: 10.1016/j.pt.2022.05.002</identifier><identifier>PMID: 35643853</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>arthropod vector ; development ; metabolism ; microbiota ; vector competence</subject><ispartof>Trends in parasitology, 2022-08, Vol.38 (8), p.697-708</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-18381843f5c5769a2600a525df054530b98c29abf931ea77541006ef0b55fa203</citedby><cites>FETCH-LOGICAL-c392t-18381843f5c5769a2600a525df054530b98c29abf931ea77541006ef0b55fa203</cites><orcidid>0000-0003-1576-3556 ; 0000-0002-6794-2604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.pt.2022.05.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35643853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Xiumei</creatorcontrib><creatorcontrib>Zhong, Zhengwei</creatorcontrib><creatorcontrib>Gao, Li</creatorcontrib><creatorcontrib>Weiss, Brian L.</creatorcontrib><creatorcontrib>Wang, Jingwen</creatorcontrib><title>Metabolic interactions between disease-transmitting vectors and their microbiota</title><title>Trends in parasitology</title><addtitle>Trends Parasitol</addtitle><description>Disease-transmitting vectors are living organisms that pass infectious agents from one animal/human to another. The epidemiologically important vectors are usually hematophagous arthropods, including mosquitoes, ticks, triatome bugs, sand flies, and tsetse flies. All of them harbor an endogenous microbiota that functionally complements their host’s biology. Different arthropod vectors are ecologically and behaviorally distinct, and as such, their relationships with symbiotic microbes vary. In this review, we summarize the recent discoveries that reveal how bacterial metabolic activities influence development, nutrition, and pathogen defense in mosquitoes, ticks, triatome bugs, and sand flies. These studies provide a foundation for a systematic understanding of vector–microbiota interactions and for the development of integrated approaches to control vector-borne diseases.
Vectors transmit a variety of infectious pathogens that threaten animal and human health.The different life cycles, feeding habits, and habitats of these vectors lead to their association with diverse symbiotic microorganisms.Metabolic interactions between symbiotic microbes and vectors profoundly influence multiple aspects of vector biology.Harnessing and manipulating vector–microbe symbioses can provide potential targets for vector control.</description><subject>arthropod vector</subject><subject>development</subject><subject>metabolism</subject><subject>microbiota</subject><subject>vector competence</subject><issn>1471-4922</issn><issn>1471-5007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqWwM6GMLAlnO44TNlTxJRXBALPlOBdwlTjFdov496RqYWO6G5731d1DyDmFjAItrpbZKmYMGMtAZADsgExpLmkqAOThfs8rxibkJIQlABVSVsdkwkWR81LwKXl5wqjrobMmsS6i1ybawYWkxviF6JLGBtQB0-i1C72N0br3ZIMmDj4k2jVJ_EDrk94aP9R2iPqUHLW6C3i2nzPydnf7On9IF8_3j_ObRWp4xWJKS17SMuetMEIWlWYFgBZMNC2IXHCoq9KwStdtxSlqKUVOAQpsoRai1Qz4jFzueld--FxjiKq3wWDXaYfDOihWSMYZL3g5orBDxxtD8Niqlbe99t-Kgtp6VEu1imrrUYFQo8cxcrFvX9c9Nn-BX3EjcL0DcPxxY9GrYCw6g431ox3VDPb_9h9kAIJA</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Song, Xiumei</creator><creator>Zhong, Zhengwei</creator><creator>Gao, Li</creator><creator>Weiss, Brian L.</creator><creator>Wang, Jingwen</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1576-3556</orcidid><orcidid>https://orcid.org/0000-0002-6794-2604</orcidid></search><sort><creationdate>20220801</creationdate><title>Metabolic interactions between disease-transmitting vectors and their microbiota</title><author>Song, Xiumei ; Zhong, Zhengwei ; Gao, Li ; Weiss, Brian L. ; Wang, Jingwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-18381843f5c5769a2600a525df054530b98c29abf931ea77541006ef0b55fa203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>arthropod vector</topic><topic>development</topic><topic>metabolism</topic><topic>microbiota</topic><topic>vector competence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Xiumei</creatorcontrib><creatorcontrib>Zhong, Zhengwei</creatorcontrib><creatorcontrib>Gao, Li</creatorcontrib><creatorcontrib>Weiss, Brian L.</creatorcontrib><creatorcontrib>Wang, Jingwen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Trends in parasitology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Xiumei</au><au>Zhong, Zhengwei</au><au>Gao, Li</au><au>Weiss, Brian L.</au><au>Wang, Jingwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic interactions between disease-transmitting vectors and their microbiota</atitle><jtitle>Trends in parasitology</jtitle><addtitle>Trends Parasitol</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>38</volume><issue>8</issue><spage>697</spage><epage>708</epage><pages>697-708</pages><issn>1471-4922</issn><eissn>1471-5007</eissn><abstract>Disease-transmitting vectors are living organisms that pass infectious agents from one animal/human to another. The epidemiologically important vectors are usually hematophagous arthropods, including mosquitoes, ticks, triatome bugs, sand flies, and tsetse flies. All of them harbor an endogenous microbiota that functionally complements their host’s biology. Different arthropod vectors are ecologically and behaviorally distinct, and as such, their relationships with symbiotic microbes vary. In this review, we summarize the recent discoveries that reveal how bacterial metabolic activities influence development, nutrition, and pathogen defense in mosquitoes, ticks, triatome bugs, and sand flies. These studies provide a foundation for a systematic understanding of vector–microbiota interactions and for the development of integrated approaches to control vector-borne diseases.
Vectors transmit a variety of infectious pathogens that threaten animal and human health.The different life cycles, feeding habits, and habitats of these vectors lead to their association with diverse symbiotic microorganisms.Metabolic interactions between symbiotic microbes and vectors profoundly influence multiple aspects of vector biology.Harnessing and manipulating vector–microbe symbioses can provide potential targets for vector control.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35643853</pmid><doi>10.1016/j.pt.2022.05.002</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1576-3556</orcidid><orcidid>https://orcid.org/0000-0002-6794-2604</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-4922 |
ispartof | Trends in parasitology, 2022-08, Vol.38 (8), p.697-708 |
issn | 1471-4922 1471-5007 |
language | eng |
recordid | cdi_proquest_miscellaneous_2672323638 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | arthropod vector development metabolism microbiota vector competence |
title | Metabolic interactions between disease-transmitting vectors and their microbiota |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20interactions%20between%20disease-transmitting%20vectors%20and%20their%20microbiota&rft.jtitle=Trends%20in%20parasitology&rft.au=Song,%20Xiumei&rft.date=2022-08-01&rft.volume=38&rft.issue=8&rft.spage=697&rft.epage=708&rft.pages=697-708&rft.issn=1471-4922&rft.eissn=1471-5007&rft_id=info:doi/10.1016/j.pt.2022.05.002&rft_dat=%3Cproquest_cross%3E2672323638%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672323638&rft_id=info:pmid/35643853&rft_els_id=S1471492222001052&rfr_iscdi=true |