Capsule-Based dry powder inhaler evaluation using CFD-DEM simulations and next generation impactor data

•Coupled CFD-DEM model built to predict the performance of common capsule DPIs.•Model predicts particle dynamics that affect powder aerosol characteristics.•Formulation and DPI design interplay affecting fine aerosol generation identified.•Model results correlate with experimental cascade impactor d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmaceutical sciences 2022-08, Vol.175, p.106226-106226, Article 106226
Hauptverfasser: Almeida, Lucilla C., Bharadwaj, Rahul, Eliahu, Avi, Wassgren, Carl R., Nagapudi, Karthik, Muliadi, Ariel R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106226
container_issue
container_start_page 106226
container_title European journal of pharmaceutical sciences
container_volume 175
creator Almeida, Lucilla C.
Bharadwaj, Rahul
Eliahu, Avi
Wassgren, Carl R.
Nagapudi, Karthik
Muliadi, Ariel R.
description •Coupled CFD-DEM model built to predict the performance of common capsule DPIs.•Model predicts particle dynamics that affect powder aerosol characteristics.•Formulation and DPI design interplay affecting fine aerosol generation identified.•Model results correlate with experimental cascade impactor data.•Design modifications to optimize capsule DPI performance are proposed. [Display omitted] Capsule-based, single-dose dry powder inhalers (DPIs) are commonly-used devices to deliver medications to the lungs. This work evaluates the effect of the drug/excipient adhesive bonding and the DPI resistances on the aerosol performance using a combination of empirical multi-stage impactor data and a fully-coupled computational fluid dynamics (CFD) and discrete element method (DEM) model. Model-predicted quantities show that the primary modes of powder dispersion are a function of the device resistance. Lowering the device resistance increases its capacity to transport a wider range of particle size classes toward the outlet and generate more intense turbulence upstream therein. On the other hand, a higher device resistance increases the velocity of the tangential airflow along the device walls, which in turn increases the intensity of particle/device impaction. Correlating model data and experimental results shows that these differing powder dispersion mechanisms affect different formulations differently, with finer aerosols tending to result when pairing a lower resistance device with formulations that exhibit low API/excipient adhesion, or when pairing a high resistance device with more cohesive formulations.
doi_str_mv 10.1016/j.ejps.2022.106226
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2672318703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928098722001117</els_id><sourcerecordid>2672318703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-8a8ae12452f4638ad3dea6558ae0be1dccbc3af337660b1af6aa9aae0dc6f8413</originalsourceid><addsrcrecordid>eNp9kE1PHDEMhqOqVVmgf4BDlWMvs3WS2UxW6qVdoK1ExQXOkTfxLFnNF8kMH_-ebAd67MmS_fiV_TB2JmApQOiv-yXth7SUIGVuaCn1O7YQploXUEl4zxawlqaAtamO2HFKewDQpoKP7EitdKlUZRZst8EhTQ0VPzCR5z4-86F_9BR56O6wyZUesJlwDH3HpxS6Hd9cnhfnF394Cu3U_B0kjp3nHT2NfEcdxZkO7YBu7CP3OOIp-1Bjk-jTaz1ht5cXN5tfxdX1z9-b71eFKwHGwqBBErJcybrUyqBXnlCvVrkLWxLeua1TWOfbtYatwFojrjEPvdO1KYU6YV_m3CH29xOl0bYhOWoa7KifkpW6kio7ApVROaMu9ilFqu0QQ4vx2QqwB8F2bw-C7UGwnQXnpc-v-dO2Jf9v5c1oBr7NAOUvHwJFm1ygzpEPkdxofR_-l_8CgiON8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672318703</pqid></control><display><type>article</type><title>Capsule-Based dry powder inhaler evaluation using CFD-DEM simulations and next generation impactor data</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Almeida, Lucilla C. ; Bharadwaj, Rahul ; Eliahu, Avi ; Wassgren, Carl R. ; Nagapudi, Karthik ; Muliadi, Ariel R.</creator><creatorcontrib>Almeida, Lucilla C. ; Bharadwaj, Rahul ; Eliahu, Avi ; Wassgren, Carl R. ; Nagapudi, Karthik ; Muliadi, Ariel R.</creatorcontrib><description>•Coupled CFD-DEM model built to predict the performance of common capsule DPIs.•Model predicts particle dynamics that affect powder aerosol characteristics.•Formulation and DPI design interplay affecting fine aerosol generation identified.•Model results correlate with experimental cascade impactor data.•Design modifications to optimize capsule DPI performance are proposed. [Display omitted] Capsule-based, single-dose dry powder inhalers (DPIs) are commonly-used devices to deliver medications to the lungs. This work evaluates the effect of the drug/excipient adhesive bonding and the DPI resistances on the aerosol performance using a combination of empirical multi-stage impactor data and a fully-coupled computational fluid dynamics (CFD) and discrete element method (DEM) model. Model-predicted quantities show that the primary modes of powder dispersion are a function of the device resistance. Lowering the device resistance increases its capacity to transport a wider range of particle size classes toward the outlet and generate more intense turbulence upstream therein. On the other hand, a higher device resistance increases the velocity of the tangential airflow along the device walls, which in turn increases the intensity of particle/device impaction. Correlating model data and experimental results shows that these differing powder dispersion mechanisms affect different formulations differently, with finer aerosols tending to result when pairing a lower resistance device with formulations that exhibit low API/excipient adhesion, or when pairing a high resistance device with more cohesive formulations.</description><identifier>ISSN: 0928-0987</identifier><identifier>EISSN: 1879-0720</identifier><identifier>DOI: 10.1016/j.ejps.2022.106226</identifier><identifier>PMID: 35643378</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>CFD-DEM ; Computational fluid dynamics ; Discrete element method ; Dry powder inhalers ; Inhalation drug delivery</subject><ispartof>European journal of pharmaceutical sciences, 2022-08, Vol.175, p.106226-106226, Article 106226</ispartof><rights>2022</rights><rights>Copyright © 2022. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-8a8ae12452f4638ad3dea6558ae0be1dccbc3af337660b1af6aa9aae0dc6f8413</citedby><cites>FETCH-LOGICAL-c400t-8a8ae12452f4638ad3dea6558ae0be1dccbc3af337660b1af6aa9aae0dc6f8413</cites><orcidid>0000-0003-0066-4141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejps.2022.106226$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35643378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Almeida, Lucilla C.</creatorcontrib><creatorcontrib>Bharadwaj, Rahul</creatorcontrib><creatorcontrib>Eliahu, Avi</creatorcontrib><creatorcontrib>Wassgren, Carl R.</creatorcontrib><creatorcontrib>Nagapudi, Karthik</creatorcontrib><creatorcontrib>Muliadi, Ariel R.</creatorcontrib><title>Capsule-Based dry powder inhaler evaluation using CFD-DEM simulations and next generation impactor data</title><title>European journal of pharmaceutical sciences</title><addtitle>Eur J Pharm Sci</addtitle><description>•Coupled CFD-DEM model built to predict the performance of common capsule DPIs.•Model predicts particle dynamics that affect powder aerosol characteristics.•Formulation and DPI design interplay affecting fine aerosol generation identified.•Model results correlate with experimental cascade impactor data.•Design modifications to optimize capsule DPI performance are proposed. [Display omitted] Capsule-based, single-dose dry powder inhalers (DPIs) are commonly-used devices to deliver medications to the lungs. This work evaluates the effect of the drug/excipient adhesive bonding and the DPI resistances on the aerosol performance using a combination of empirical multi-stage impactor data and a fully-coupled computational fluid dynamics (CFD) and discrete element method (DEM) model. Model-predicted quantities show that the primary modes of powder dispersion are a function of the device resistance. Lowering the device resistance increases its capacity to transport a wider range of particle size classes toward the outlet and generate more intense turbulence upstream therein. On the other hand, a higher device resistance increases the velocity of the tangential airflow along the device walls, which in turn increases the intensity of particle/device impaction. Correlating model data and experimental results shows that these differing powder dispersion mechanisms affect different formulations differently, with finer aerosols tending to result when pairing a lower resistance device with formulations that exhibit low API/excipient adhesion, or when pairing a high resistance device with more cohesive formulations.</description><subject>CFD-DEM</subject><subject>Computational fluid dynamics</subject><subject>Discrete element method</subject><subject>Dry powder inhalers</subject><subject>Inhalation drug delivery</subject><issn>0928-0987</issn><issn>1879-0720</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PHDEMhqOqVVmgf4BDlWMvs3WS2UxW6qVdoK1ExQXOkTfxLFnNF8kMH_-ebAd67MmS_fiV_TB2JmApQOiv-yXth7SUIGVuaCn1O7YQploXUEl4zxawlqaAtamO2HFKewDQpoKP7EitdKlUZRZst8EhTQ0VPzCR5z4-86F_9BR56O6wyZUesJlwDH3HpxS6Hd9cnhfnF394Cu3U_B0kjp3nHT2NfEcdxZkO7YBu7CP3OOIp-1Bjk-jTaz1ht5cXN5tfxdX1z9-b71eFKwHGwqBBErJcybrUyqBXnlCvVrkLWxLeua1TWOfbtYatwFojrjEPvdO1KYU6YV_m3CH29xOl0bYhOWoa7KifkpW6kio7ApVROaMu9ilFqu0QQ4vx2QqwB8F2bw-C7UGwnQXnpc-v-dO2Jf9v5c1oBr7NAOUvHwJFm1ygzpEPkdxofR_-l_8CgiON8A</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Almeida, Lucilla C.</creator><creator>Bharadwaj, Rahul</creator><creator>Eliahu, Avi</creator><creator>Wassgren, Carl R.</creator><creator>Nagapudi, Karthik</creator><creator>Muliadi, Ariel R.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0066-4141</orcidid></search><sort><creationdate>20220801</creationdate><title>Capsule-Based dry powder inhaler evaluation using CFD-DEM simulations and next generation impactor data</title><author>Almeida, Lucilla C. ; Bharadwaj, Rahul ; Eliahu, Avi ; Wassgren, Carl R. ; Nagapudi, Karthik ; Muliadi, Ariel R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-8a8ae12452f4638ad3dea6558ae0be1dccbc3af337660b1af6aa9aae0dc6f8413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CFD-DEM</topic><topic>Computational fluid dynamics</topic><topic>Discrete element method</topic><topic>Dry powder inhalers</topic><topic>Inhalation drug delivery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida, Lucilla C.</creatorcontrib><creatorcontrib>Bharadwaj, Rahul</creatorcontrib><creatorcontrib>Eliahu, Avi</creatorcontrib><creatorcontrib>Wassgren, Carl R.</creatorcontrib><creatorcontrib>Nagapudi, Karthik</creatorcontrib><creatorcontrib>Muliadi, Ariel R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of pharmaceutical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida, Lucilla C.</au><au>Bharadwaj, Rahul</au><au>Eliahu, Avi</au><au>Wassgren, Carl R.</au><au>Nagapudi, Karthik</au><au>Muliadi, Ariel R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capsule-Based dry powder inhaler evaluation using CFD-DEM simulations and next generation impactor data</atitle><jtitle>European journal of pharmaceutical sciences</jtitle><addtitle>Eur J Pharm Sci</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>175</volume><spage>106226</spage><epage>106226</epage><pages>106226-106226</pages><artnum>106226</artnum><issn>0928-0987</issn><eissn>1879-0720</eissn><abstract>•Coupled CFD-DEM model built to predict the performance of common capsule DPIs.•Model predicts particle dynamics that affect powder aerosol characteristics.•Formulation and DPI design interplay affecting fine aerosol generation identified.•Model results correlate with experimental cascade impactor data.•Design modifications to optimize capsule DPI performance are proposed. [Display omitted] Capsule-based, single-dose dry powder inhalers (DPIs) are commonly-used devices to deliver medications to the lungs. This work evaluates the effect of the drug/excipient adhesive bonding and the DPI resistances on the aerosol performance using a combination of empirical multi-stage impactor data and a fully-coupled computational fluid dynamics (CFD) and discrete element method (DEM) model. Model-predicted quantities show that the primary modes of powder dispersion are a function of the device resistance. Lowering the device resistance increases its capacity to transport a wider range of particle size classes toward the outlet and generate more intense turbulence upstream therein. On the other hand, a higher device resistance increases the velocity of the tangential airflow along the device walls, which in turn increases the intensity of particle/device impaction. Correlating model data and experimental results shows that these differing powder dispersion mechanisms affect different formulations differently, with finer aerosols tending to result when pairing a lower resistance device with formulations that exhibit low API/excipient adhesion, or when pairing a high resistance device with more cohesive formulations.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>35643378</pmid><doi>10.1016/j.ejps.2022.106226</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0066-4141</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0928-0987
ispartof European journal of pharmaceutical sciences, 2022-08, Vol.175, p.106226-106226, Article 106226
issn 0928-0987
1879-0720
language eng
recordid cdi_proquest_miscellaneous_2672318703
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects CFD-DEM
Computational fluid dynamics
Discrete element method
Dry powder inhalers
Inhalation drug delivery
title Capsule-Based dry powder inhaler evaluation using CFD-DEM simulations and next generation impactor data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A35%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capsule-Based%20dry%20powder%20inhaler%20evaluation%20using%20CFD-DEM%20simulations%20and%20next%20generation%20impactor%20data&rft.jtitle=European%20journal%20of%20pharmaceutical%20sciences&rft.au=Almeida,%20Lucilla%20C.&rft.date=2022-08-01&rft.volume=175&rft.spage=106226&rft.epage=106226&rft.pages=106226-106226&rft.artnum=106226&rft.issn=0928-0987&rft.eissn=1879-0720&rft_id=info:doi/10.1016/j.ejps.2022.106226&rft_dat=%3Cproquest_cross%3E2672318703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672318703&rft_id=info:pmid/35643378&rft_els_id=S0928098722001117&rfr_iscdi=true